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Abstract

In a three-dimensional Abelian gauge theory with the Chern-Simons term as a kinetic 
term, we investigate how the canonical structure is affected by a quantum effect. An equal-time 
commutator for gauge field is evaluated using the Bjorken-Johnson-Low limit. We find that the 
commutator is modified in a non-trivial way and that there appears a total sign ambiguity in a 
newly derived term due to limiting processes of the Bjorken-Johnson-Low formula, which is specific 
in odd dimensional space-time. 

Key Words：Canonical structure, Chern-Simons QED3, Bjorken-Johnson-Low limit, Parity anomaly

 
                     

Change of Canonical Structure in Chern-Simons QED3 by Quantum Effect  

 
Toyoki Matsuyama 

(Center for Educational Research of Science and Mathematics  
and 

Department of physics  
Nara University of Education, Takabatake-cho, Nara 630-8528, Japan) 

 
Abstract 

 
In a three-dimensional Abelian gauge theory with the Chern-Simons term as a kinetic term, we 

investigate how the canonical structure is affected by a quantum effect. An equal-time commutator for 
gauge field is evaluated using the Bjorken-Johnson-Low limit. We find that the commutator is 
modified in a non-trivial way and that there appears a total sign ambiguity in a newly derived term 
due to limiting processes of the Bjorken-Johnson-Low formula, which is specific in odd dimensional 
space-time.  

 
Key Words： Canonical structure, Chern-Simons QED3, Bjorken-Johnson-Low limit, Parity anomaly 
 
 
 
 

 

1. Introduction 
 

The canonical structure plays a very important role 
in quantum theories.  The structure is given by a 
starting Lagrangian and is not changed usually.  It 
decides a nature of particles under consideration as 
statistics for example. But in some specific cases, there 
appears abnormal changing of the canonical structure 
by dynamics.   

In a context of investigating quantum field theories，
non-canonical terms sometimes appear in equal-time 
commutators. Well-known example is the Schwinger 
terms in fermion current-current equal-time 
commutation relations. Quantum corrections induce 
additional terms which cannot be absorbed by local 
counter terms. Thus quantum effects change the 
equal-time commutators in these theories. [1] 

There are several discussions to explain why those 
anomalous terms may appear, using mathematical 
concept, cocycle [2], or Berry's phase and so on [3, 4, 5]: 
The anomalous or non-canonical term has a topological 

origin, i.e., topological non-triviality in gauge orbit 
space or determinant line bundle. The non-triviality 
induces “anomalies”, “Schwinger terms” or 
“deformation of simplectic structures”. Here one may 
have natural question: Is it only the case?  

In this paper，we present a novel “anomalous” 
commutator, which seems to have an  entirely 
different origin from anomalous commutators known 
previously. We treat three-dimensional Abelian gauge 
theory with the Chern-Simons term as kinetic term of 
gauge field and without usual quadratic derivative 
term, coupled to a two component massless fermion [6]. 
This is the quantum electrodynamics (QED) only with 
Chern-Simons term as the Lagrangian of the gauge 
field in three-dimensional space-time. We call this 
theory “Chern-Simons QED3”.  
 

2. Chern-Simons QED3 
 

The Lagrangian of the Chern-Simons QED3 is given by  

ℒ = �
�
𝜀𝜀���𝐴𝐴�𝜕𝜕�𝐴𝐴� + 𝜓𝜓�𝛾𝛾�(𝑖𝑖𝑖𝑖 − 𝑒𝑒𝑒𝑒)�𝜓𝜓 ,     (1) 
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1. Introduction

2. Chern-Simons QED3

where the repetition of indices means to take the 
summation over 0, 1, 2 . The 𝜀𝜀���  is a totally 
anti-symmetric tenser with 𝜀𝜀��� = 1 . The Dirac’s 
𝛾𝛾 -matrices are defined by 𝛾𝛾� = 𝜎𝜎�, 𝛾𝛾� = 𝑖𝑖𝑖𝑖�, 𝛾𝛾� = 𝑖𝑖𝑖𝑖� 
by using the Pauli matrices 𝜎𝜎�, 𝜎𝜎� and 𝜎𝜎�. We use the 
Minkowski metric so as diagonal(𝑔𝑔��) = (1, −1, −1) . 
Mass dimensions of 𝜃𝜃  and 𝑒𝑒  are [𝜃𝜃] = [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]�  and 
[𝑒𝑒] =  [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]�/�.  

If we try to quantize the Chern-Simons QED3 in the 
Hamiltonian formalism, there appear many 
constraints. The theory is a constraint system. In that 
case, we may quantize the theory following two 
strategies: (i) One method is to construct a generalized 
Hamilton system following the Dirac’s program [7]. 
After that, we pass to quantum theory regarding the 
Dirac brackets as equal-time (anti-) commutator. (ii) 
On the other hand, according to Faddeev-Senjanovic 
method for a constraint system [8], we can quantize 
the theory in path-integral formalism and obtain 
Feynman rules. Now we would like to know the 
canonical structure of the theory. There is a traditional 
method to derive equal-time commutation relations 
from given Feynman rules. This is the Bjorken- 
Johnson-Low limit. [5] We can derive equal-time 
commutators through the Bjorken-Johnson-Low limit.  
Usually，both prescriptions of quantization for a 

constraint system mentioned above is coincide with 
each other. By finite renormalizations, the radiative 
correction is absorbed in coupling constants, wave 
functions, and mass parameters multiplicatively. In 
the exceptional cases where theories have anomalies, 
there appear the Schwinger terms.  
  How about Chern-Simons QED3? We apply the 
Bjorken-Johnson-Low method to Chern-Simons QED3 
and show that an equal-time commutation relation is 
modified from the one derived in Dirac's formalism, in 
a manner that an additional term cannot be absorbed 
by the usual renormalization. This is also the case that 
the canonical structure is changed due to quantum 
effect. But it is important to note that the "anomalous" 
term in Chern-Simons QED3 seems to have a different 
origin from the usual Schwinger terms.  
  Let us consider to quantize Chern-Simons QED3.  
Eq. (1) is gauge invariant (apart from a total derivative 
term) so that we should add the covariant gauge fixing 
term 

ℒ = − �
��

(𝜕𝜕�𝐴𝐴�)�  ,               (2) 

where 𝜉𝜉 is a gauge fixing parameter.  Even if we add 
the covariant gauge fixing term to eq. (1), constraints 
cannot be removed completely so that we use the 
Dirac's procedure for quantization of constraint system. 
After routine works we obtain Dirac brackets. 
Especially we are interested in the following bracket.  

{𝐴𝐴�(𝑡𝑡, 𝑥⃗𝑥),  𝐴𝐴�(𝑡𝑡, 𝑦⃗𝑦)}����� = �
�

𝜀𝜀��𝛿𝛿(𝑥⃗𝑥, −𝑦⃗𝑦) ,      (3) 

where 𝑖𝑖, 𝑗𝑗 = 1, 2. The usual procedure of quantization 
says that we should replace eq. (3) with the equal-time 
commutation relation， 

[𝐴𝐴�(𝑡𝑡, 𝑥⃗𝑥), 𝐴𝐴�(𝑡𝑡, 𝑦⃗𝑦)] = �
�

𝜀𝜀��𝛿𝛿(𝑥⃗𝑥 − 𝑦⃗𝑦) .       (4) 

It should be noted that the right hand side of eq. (4) is 
anti-symmetric for exchange of i and j. 
 

3. Bjorken-Johnson-Low limit  
 

The problem is whether any quantum effects change 
the equal-time commutator or not. We examine this by 
using the Bjorken-Johnson-Low limit, in which the 
equal-time commutator is given by the formula 
(Appendix A)， 

𝑖𝑖 � 𝑑𝑑𝑑⃗𝑑 𝑒𝑒����⃗  ∙(�⃗� ��⃗ ) < 𝛼𝛼| �𝐴𝐴�(𝑡𝑡, 𝑥⃗𝑥), 𝐴𝐴�(𝑡𝑡, 𝑦⃗𝑦)�|𝛽𝛽 > 

            =  lim
��→�

 𝑞𝑞�𝐷𝐷��(𝑞𝑞) ,            (5) 

where 
𝐷𝐷��(𝑞𝑞) ≡ ∫ 𝑑𝑑�𝑥𝑥 𝑥𝑥� �∙(���) < 𝛼𝛼|𝑇𝑇𝑇𝑇�(𝑥𝑥) 𝐴𝐴�(𝑦𝑦)|𝛽𝛽 > .  (6) 

It is assumed that 𝑞𝑞�𝐷𝐷��(𝑞𝑞) in eq. (5) is an analytic 
function. Eq. (6) is photon propagator in 
energy-momentum space. By using the 
Bjorken-Johnson-Low limit，we can derive equal-time 
commutators from Feynman rule. In a sense, the 
Bjorken-Johnson-Low formula，eqs. (5) and (6)，is the 
definition of equal-time commutators.   

Consider free case. The free photon propagator is 
given by 

𝐷𝐷����
��  (𝑞𝑞) = − �

�
𝜀𝜀�� ��

�� − 𝑖𝑖𝑖𝑖 ����

(��)�  ,      (7) 

where 𝑖𝑖, 𝑗𝑗 = 1, 2. Substituting eq. (7) into eq. (5) we 
recover eq. (4) as expected. Thus in tree level the 
commutator defined by using the Bjorken-Johnson- 
Low limit is consistent with the one obtained in Dirac 
procedure. 
 

4. Fermion Loop Correction 
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𝜀𝜀��𝛿𝛿(𝑥⃗𝑥 − 𝑦⃗𝑦) .       (4) 

It should be noted that the right hand side of eq. (4) is 
anti-symmetric for exchange of i and j. 
 

3. Bjorken-Johnson-Low limit  
 

The problem is whether any quantum effects change 
the equal-time commutator or not. We examine this by 
using the Bjorken-Johnson-Low limit, in which the 
equal-time commutator is given by the formula 
(Appendix A)， 

𝑖𝑖 � 𝑑𝑑𝑑⃗𝑑 𝑒𝑒����⃗  ∙(�⃗� ��⃗ ) < 𝛼𝛼| �𝐴𝐴�(𝑡𝑡, 𝑥⃗𝑥), 𝐴𝐴�(𝑡𝑡, 𝑦⃗𝑦)�|𝛽𝛽 > 

            =  lim
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 𝑞𝑞�𝐷𝐷��(𝑞𝑞) ,            (5) 

where 
𝐷𝐷��(𝑞𝑞) ≡ ∫ 𝑑𝑑�𝑥𝑥 𝑥𝑥� �∙(���) < 𝛼𝛼|𝑇𝑇𝑇𝑇�(𝑥𝑥) 𝐴𝐴�(𝑦𝑦)|𝛽𝛽 > .  (6) 

It is assumed that 𝑞𝑞�𝐷𝐷��(𝑞𝑞) in eq. (5) is an analytic 
function. Eq. (6) is photon propagator in 
energy-momentum space. By using the 
Bjorken-Johnson-Low limit，we can derive equal-time 
commutators from Feynman rule. In a sense, the 
Bjorken-Johnson-Low formula，eqs. (5) and (6)，is the 
definition of equal-time commutators.   

Consider free case. The free photon propagator is 
given by 

𝐷𝐷����
��  (𝑞𝑞) = − �

�
𝜀𝜀�� ��

�� − 𝑖𝑖𝑖𝑖 ����

(��)�  ,      (7) 

where 𝑖𝑖, 𝑗𝑗 = 1, 2. Substituting eq. (7) into eq. (5) we 
recover eq. (4) as expected. Thus in tree level the 
commutator defined by using the Bjorken-Johnson- 
Low limit is consistent with the one obtained in Dirac 
procedure. 
 

4. Fermion Loop Correction 
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3. Bjorken-Johnson-Low limit

4. Fermion Loop Correction

Under the parity transformation [9], the gauge part 
in eq. (1) is odd (i.e., changes its total sign) and the 
fermion part is even. Further if we consider a radiative 
correction due to fermion loop，both parity-even and 
odd parts are induced in an effective action of gauge 
field. The appearance of parity-odd part，which is the 
induced Chern-Simons term, is called “parity anomaly” 
[10] and discussed extensively in other contexts. 
Rather，our attention in this paper is concentrated to 
the induced parity-even part. Seeing from the side of 
gauge field, while there is no parity-even part in the 
starting Lagrangian, the quantum correction induces 
parity-even part through fermion loop correction. This 
is just the essence of our novel “anomalous" term.  
  Now we include fermion loop correction as  

𝐷𝐷��(𝑞𝑞) = [𝐷𝐷����
�� (𝑞𝑞)�� − 𝛱𝛱��(𝑞𝑞)]��       (8) 

where 𝛱𝛱��(𝑞𝑞) is vacuum polarization tensor of gauge 
field. Up to one-loop, an explicit calculation shows  

𝛱𝛱��(𝑞𝑞) = ��

��
 �𝑞𝑞� 𝑔𝑔�� − 𝑞𝑞�𝑞𝑞�� �

|�|
+ ��

��
𝜀𝜀��𝑞𝑞�    (9) 

The first term in the right hand side of eq. (9) is 
parity-even and the second is odd. The odd part is 
induced by introducing a heavy fermion as a regulator 
of ultra-violet divergence. This term is the parity 
anomaly and has a topological origin. (We have used 
the Pauli-Villars regularization. There is a 
regularization ambiguity [9, 10] in the last term of eq. 
(9), which，however, does not change our main results.) 
Then the propagator of gauge field including effects of 
fermion loop becomes 

𝐷𝐷��(𝑞𝑞) = −
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by using eqs. (8) and (9). (Appendix B) In the limit as 
𝑞𝑞� ≫ |𝑞⃗𝑞|, we have  
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Here we substitute eq. (11) into eq. (5) and find that 
the equal-time commutation relation derived through 
Bjorken-Johnson-Low limit is  

�𝐴𝐴�(𝑡𝑡, 𝑥⃗𝑥), 𝐴𝐴�(𝑡𝑡, 𝑦⃗𝑦)� = 𝑖𝑖
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Of course，if we set the coupling constant 𝑒𝑒 to zero, eq. 
(12) reduces to the free case eq. (4).  

In eqs. (5), (6), and (10), we obtain the relation   
��

|�|
= ��

|��|
= sgn(q�) for 𝑞𝑞� ≫ |𝑞⃗𝑞|, where sgn means the 

signum function.  In the limit 𝑞𝑞� → ∞, 𝑞𝑞� in eq. (11) 

is positive so that ��

|��|
→ 1 . This behavior in the 

limiting process gives us the result in eq. (12).   
 

5. Change of Canonical Structure 
 

It is a novel feature that there appears the 
symmetric part proportional to 𝑔𝑔�� as a correction by 
the quantum effect, while the free case is consist of 
only totally anti-symmetric part proportional to 𝜀𝜀�� . 
The symmetric part cannot be absorbed by a finite 
renormalization of coupling constant or field operator，
because the tensor structure is altered. If we tend to 
renormalize multiplicatively, the renormalization 
factor 𝑍𝑍 acquires to have the tensor structure like 𝑍𝑍��, 
which is unusual. Thus a quantum effect induces a 
kind of "anomalous" term. Further, naively seeing, the 
“anomalous” term does not seem to have topological 
origin as the parity anomaly f QED3 [11].  

We may consider more higher radiative corrections. 
In the case of the usual QED3, the non-renormalization 
theorem holds for the part of the parity anomaly [11, 
12]. We can extend the theorem to the case of Chern- 
Simons QED3. On the other hand, our “anomalous” 
term has its origin in the parity even part so that there 
is not such a theorem. Therefore more higher-order 
loops may induce more corrections for the commutator. 
Eq. (12) is obtained starting from the massless fermion. 
In the case of massive fermion, we have the same 
expression as eq. (12).  
 

6. Discussions and Conclusions 
 

The result of eq. (12) has a curious aspect. If we 
interpret the left hand side as the usual commutator of 
𝐴𝐴�′𝑠𝑠 , the side is totally anti-symmetric under the 
exchange of  (i, x) and ( j, y), but the right hand side is 
not totally anti-symmetric because of the term 
proportional to 𝑔𝑔��. This is seen typically，if we set 



Change of Canonical Structure in Chern-Simons QED3 by Quantum Effect 25

5. Change of Canonical Structure

Under the parity transformation [9], the gauge part 
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the induced parity-even part. Seeing from the side of 
gauge field, while there is no parity-even part in the 
starting Lagrangian, the quantum correction induces 
parity-even part through fermion loop correction. This 
is just the essence of our novel “anomalous" term.  
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The first term in the right hand side of eq. (9) is 
parity-even and the second is odd. The odd part is 
induced by introducing a heavy fermion as a regulator 
of ultra-violet divergence. This term is the parity 
anomaly and has a topological origin. (We have used 
the Pauli-Villars regularization. There is a 
regularization ambiguity [9, 10] in the last term of eq. 
(9), which，however, does not change our main results.) 
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by using eqs. (8) and (9). (Appendix B) In the limit as 
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symmetric part proportional to 𝑔𝑔�� as a correction by 
the quantum effect, while the free case is consist of 
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Eq. (12) is obtained starting from the massless fermion. 
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Of course，if we set the coupling constant 𝑒𝑒 to zero, eq. 
(12) reduces to the free case eq. (4).  

In eqs. (5), (6), and (10), we obtain the relation   
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= sgn(q�) for 𝑞𝑞� ≫ |𝑞⃗𝑞|, where sgn means the 

signum function.  In the limit 𝑞𝑞� → ∞, 𝑞𝑞� in eq. (11) 

is positive so that ��
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→ 1 . This behavior in the 

limiting process gives us the result in eq. (12).   
 

5. Change of Canonical Structure 
 

It is a novel feature that there appears the 
symmetric part proportional to 𝑔𝑔�� as a correction by 
the quantum effect, while the free case is consist of 
only totally anti-symmetric part proportional to 𝜀𝜀�� . 
The symmetric part cannot be absorbed by a finite 
renormalization of coupling constant or field operator，
because the tensor structure is altered. If we tend to 
renormalize multiplicatively, the renormalization 
factor 𝑍𝑍 acquires to have the tensor structure like 𝑍𝑍��, 
which is unusual. Thus a quantum effect induces a 
kind of "anomalous" term. Further, naively seeing, the 
“anomalous” term does not seem to have topological 
origin as the parity anomaly f QED3 [11].  

We may consider more higher radiative corrections. 
In the case of the usual QED3, the non-renormalization 
theorem holds for the part of the parity anomaly [11, 
12]. We can extend the theorem to the case of Chern- 
Simons QED3. On the other hand, our “anomalous” 
term has its origin in the parity even part so that there 
is not such a theorem. Therefore more higher-order 
loops may induce more corrections for the commutator. 
Eq. (12) is obtained starting from the massless fermion. 
In the case of massive fermion, we have the same 
expression as eq. (12).  
 

6. Discussions and Conclusions 
 

The result of eq. (12) has a curious aspect. If we 
interpret the left hand side as the usual commutator of 
𝐴𝐴�′𝑠𝑠 , the side is totally anti-symmetric under the 
exchange of  (i, x) and ( j, y), but the right hand side is 
not totally anti-symmetric because of the term 
proportional to 𝑔𝑔��. This is seen typically，if we set 
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Naively thinking, the equal-time commutator of the 
same field operators should vanishes. But precisely 
speaking，we should denote the left hand side as a 
vacuum expectation value  

< 0��𝐴𝐴�(𝑡𝑡, 𝑥⃗𝑥), 𝐴𝐴�(𝑡𝑡, 𝑦⃗𝑦)��0 >                  (14) 
so that eq. (12) can become understandable in this 
sense. There is no reason that the expectation value of 
the commutator between the same variables should 
vanish.  
  The classical algebra for canonical variables which 
are defined by Poisson or Dirac bracket may not hold 
for quantum operators. In the quantum level, there 
might image a new algebra. Then the result seems to 
suggest a following important property of Chern- 
Simons QED3: The change of algebra for canonical 
variables can be interpreted as the change of statistics. 
[13, 14] Thus quantum effects change the statistics of 
the quanta. Such a situation has known in the past. 
Some kinds of bound states can change those statistics 
from the one of each component field. But previously 
we do not know the case like ours, where the most 
basic commutation relation for canonical variables is 
changed in a nontrivial way as denoted typically in eq. 
(13).  
  As a phenomenological model of the high-Tc 
superconductivity, three dimensional O(3) non-linear 
sigma model with the Hopf term [13] was discussed. In 
low energy regions, the model becomes CP1 model with 
the Chern-Simons term for a hidden U(1) gauge field 
( Chern-Simons CP1) [15, 16]. It is also a theory with 
the Chern-Simons term as kinetic term. While there is 
the difference that the Chern-Simons QED3 is coupled 
to fermion but the Chern-Simons CP1 is coupled to 
complex scalar field, the situation is similar. There 
may occur the changing of canonical structure due to 
quantum effect in Chern-Simons CP1. Then the 
Bose-Fermi transmutation shown in the Chern-Simons 
CP1, might be affected by the change of the canonical 
structure.  
  In eq. (11), we have used the traditional 
manipulations which are employed in the usual 
Bjorken-Johnson-Low limit calculus. Here it should be 
noted that there is an ambiguity by the limiting 
process of 𝑞𝑞� , which is a new aspect of the 
Bjorken-Johnson-Low limit in odd dimensional 

space-time. Usually the terms obtained after taking 
limits  q� → ∞  and q� → −∞  coincide with each 
other.  However the limits give us the term with 
opposite sign in our case.  Thus there is the ambiguity 
of the total sign under the limiting processes as 
q� → ±∞ .  This is the unusual behavior which is 
never seen in even dimensional space-time.  The 
essence is the analytic behavior of vacuum polarization 

tensor in odd dimensions.  The function like �
|�|

 is 

allowed to appear because the coupling constant 𝑒𝑒 has 
the mass dimension [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]�/�.  From a physical point 
of view, this ambiguity is not serious.  We can decide 
the sign so as an experimental setting can be realized 
by the phenomenological model.   
  In conclusion，we have shown that the non-canonical 
term in the equal-time commutator between gauge 
fields appears in the Chern-Simons QED3 which has 
been derived by using the Bjorken-Johnson-Low limit. 
The implication of the result is that the statistics may 
be affected by the quantum effect. Further the 
Bjorken-Johnson-Low limit in odd dimensions has the 
ambiguity in its limiting process, which may make the 
structure of the theory richer. 
 
Appendix A: The Bjorken-Johnson-Low formula 
 
  We consider two field operators A(t, x�⃗ ) and B(t, y�⃗ ).  
A matrix element of the T-product of these operators is 
defined by 

𝐷𝐷(𝑞𝑞) ≡ ∫ 𝑑𝑑�𝑥𝑥 𝑒𝑒�� ∙(���) < 𝛼𝛼| 𝑇𝑇𝑇𝑇(𝑥𝑥)𝐵𝐵(𝑦𝑦)|𝛽𝛽 >  ,   (A.1) 
where < 𝛼𝛼|  and |𝛽𝛽 >  are quantum state vectors.  
The expectation vale depends on x − y because of its 
translational invariance so that the y-dependence in 
the left hand side of eq. (A.1) vanishes by the 
x-integration.  Under the condition 𝑞𝑞� ≠ 0, eq. (A.1) is 
rewritten as  

𝐷𝐷(𝑞𝑞) ≡ −𝑖𝑖 �
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(A.2) 
The time integration by parts may produce the surface 
term which can be dropped because the field operators 
vanish at the infinite surface.  Then we obtain 
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The second term in the right hand side in eq. (A.3) 
appears because of the T -product.  The first term 
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Naively thinking, the equal-time commutator of the 
same field operators should vanishes. But precisely 
speaking，we should denote the left hand side as a 
vacuum expectation value  
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sense. There is no reason that the expectation value of 
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vanish.  
  The classical algebra for canonical variables which 
are defined by Poisson or Dirac bracket may not hold 
for quantum operators. In the quantum level, there 
might image a new algebra. Then the result seems to 
suggest a following important property of Chern- 
Simons QED3: The change of algebra for canonical 
variables can be interpreted as the change of statistics. 
[13, 14] Thus quantum effects change the statistics of 
the quanta. Such a situation has known in the past. 
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from the one of each component field. But previously 
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CP1, might be affected by the change of the canonical 
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  In eq. (11), we have used the traditional 
manipulations which are employed in the usual 
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Appendix B: The propagator of gauge field including 
the vacuum polarization effect 
 
  We show the propagator of the gauge field including 
the vacuum polarization effect, whose Lagrangian is 
given only by Chern-Simons term. The free propagator 
is  
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and its inverse becomes  
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in the energy-momentum space. The vacuum 
polarization tensor is calculated as  

𝛱𝛱��(𝑞𝑞) = ��

��
(𝑞𝑞�𝑔𝑔�� − 𝑞𝑞�𝑞𝑞�) �

|�|
+ ��

��
𝜀𝜀���𝑞𝑞� ,   (B.3) 

up to one-loop perturbation.  The propagator 
including the effect of the vacuum polarization is 
obtained by  
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Eventually we have the result as  
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should vanish in q� → ∞  limit according to the 
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【日本語要旨】

Change of Canonical Structure in Chern-Simons QED3 
by Quantum Effects

松　山　豊　樹　奈良教育大学理数教育研究センター、理科教育講座　物理学教室

アーベル群上のチャーン・シモンズ項を力学的な作用に持つ3次元量子力学において、正順構造が量子効果によって
どのような影響を受けるかを研究する。ゲージ場の同時刻交換関係をブジョルケン、ジョンソン、ロー極限の手法で
評価する。奇数時限時空の特性として、同時刻交換関係が非自明に修正され正準構造が修正されることを導いた。そ
のとき、新しく導かれた項にはブジョルケン、ジョンソン、ロー公式における極限操作に起因した全体符号について
の任意性が現れることを示した。


