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Quantized Pure U (1) Gauge Field Theory on Finite Element

in (d+1)-Dimensional Space-Time

Toyoki MATSUYAMA
(Department of Physics, Nara University of Education)

Abstract

We construct a quantized pure U(1) gauge field theory on a finite element in (d+1)-dimensional

space-time. The field equations of motion are formulated on the finite element and it is shown that

the equations have a desirable dispersion relation. We show that the field equations on the finite

element preserve the symmetry which corresponds to the gauge symmetry of the continuum theory

and that a gauge fixing is needed. Further, we solve the field equations of motion and prove that

the consistency condition for the quantization is satisfied using the solution.
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1. Introduction

At the present the lattice gauge theory [1] plays an
important role in understanding the non-perturbative
properties of fundamental interactions. However there
exists the so-called doubling problem for fermions.
That is, when the fermion field is formulated on a
lattice, there appears the excess of the species. To
resolve this problem, many efforts have been made.
[2]1[3][4]

Bender, et al. [5][6] applied the method of finite
elements to (1+1)-dimensional scalar and spinor fields.
For the (1+1)-dimensional spinor field, it was shown
that there was no doubling and the consistency
condition on the quantization was satisfied.

We extend their to the
(d+1)-dimensional space-time. [7][8]

showed that the Dirac equation on the finite element

in the

That 1is, we

ideas case

in the (d+1)-dimensional space-time was free from the
doubling problem. Further, we found the solution of
the equation and proved directly that the consistency
condition on the quantization was satisfied.

After these studies, the method has been applied to a
tunneling matrix method,
Problem. [9]

On the other hand,

investigate whether the method of finite element can

an operator ordering

it may be interesting to

be applied to the gauge field. The major motivations of

its application are following:
(1) The method of finite element is considered as a sort
of the

regularized version of a continuum. One of the merits

systematic procedure to construct the
in the procedure is that the spinor field is formulated
without doubling. From the unified point of view, we
should formulate the gauge field also by using the
method of finite element.

(2) The standard lattice gauge theory has a compact
gauge field space while the continuum gauge theory
has a non-compact one. There might be a possibility
that both theories have an essential difference. If we
can construct the lattice gauge theory with
non-compact gauge field space, the theory might be
more suitable as the regularized version for the
corresponding continuum theory.

In this paper, we construct the non-compact pure
U() gauge field on the finite element in the
(d+1)-dimensional space-time. In Sec. 2, we explain the
method of finite element and show how to apply it to
the quantum field theory. In Sec. 3, we summarize the
continuum pure U(1) gauge theory. The equation of
motion on the finite element is set up in Sec. 4. In Sec.
5, we derive the dispersion relation. In Sec. 6, the
gauge symmetry on the finite element and the
necessity of the gauge fixing term are discussed. We
solve the equation of motion in Sec. 7. In Sec. 8, the

equal- time commutation relations on the finite
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element and the explicit statement of the consistency
condition are shown. In Sec. 9, we prove the
consistency condition to hold. Finally, we conclude in
Sec. 10.

The novel point of our formalism is as follows. The
theory in the continuous space-time is described by the
gauge field which has its value on the group algebraic
space. We call this field as being non-compact. But in
the lattice space-time the gauge field is introduced as
the group valued link variable. It is because the
previously known difference operator breaks the gauge
invariance if we use the algebraic formalism. Therefore
there may appear any changing of properties for the
theory in the discrete space-time which does not exist
in the continuous space-time. In this paper, we propose
a new formalism on discrete space-time in which the
gauge field has the gauge invariance even if its value is
on algebraic space. This is the most new aspect of this
work. In addition, we also give a proof that the
formalism is consistent in the quantization. Thus we
propose the algebraic valued gauge field, which is
gauge invariant and also is consistent with the

quantization.

2. The method of finite element

Originally, the method of finite element is used in
order to solve partial differential equations in
computer calculus. When we solve the coupled partial
differential equations with boundary conditions, the
method gives us a powerful prescription. The method
consists of the following four steps :

Step 1: Divide the domain where the partial
differential equations are set up, into patches called
"finite element".

Step 2! Approximate the solution of the partial
differential equations by lower order polynomials.

Step 3: Require that the partial differential equations
hold at any one point on each finite element.

Step 4! Solve the algebraic equations for the
coefficients of the polynomials.

In applying the method to the quantum field theory,
we simply replace (a) "domain" with "space-time", (b)
"partial differential equations" with "field equations",
and (c) "algebraic equations for the coefficients of the
polynomials" with "time evolution equations of field
operators". Further the method should be consistent

with the quantum condition on the field operators.

Thus the formulation that will be constructed should
satisfies the following consistency condition: The equal
time (anti-) commutation relations are invariant under
the time evolution.

The procedures mentioned above are a most general
scenario. In this paper, we restrict ourselves to adopt a
(d+1)-dimensional parallelepiped as a patch and make
a linear approximation to a field operator. And we
require that field equations hold at the center of each
finite element.

The finite elements are introduced as follows:
A {ng, ...
has the

a,0=a;=aqa; i=0,1,..,d} where a;’s are spacing for

,n;,...,ng}element is the parallelepiped that
domain  {(xg, ..., X;, ..., Xg) |x; = (n; — Da; +
each space-time direction and «;’s are continuous
parameters running from 0 to a;.

The linear approximation for the field operators

f(x) is written as
fx) = Z{eo,el,...,sd} Hf51=0 {SS +(=1)% Z_z}

X f(ng — €Ny — &, s Ng — €4) 2.1
where &s run 0 and 1 for each s=0,1,...,d. For the
simplicity of notation, we denote {gy, &y, ..., &4} as {e}
and f(ng — &9,y — &4, .. f(n—2¢)
henceforth. Thus eq. (2.1) is denoted by

£ = 2o Mo e+ D*Z} f—o) . (22)

Mg — &) as

3. The equation of motion and equal time
commutation relations in the continuum theory

We summarize the equation of motion and equal
time commutation relations of the U(l) gauge field in
the (d+])-dimensional continuous space-time for later
use.

The Lagrangian density is

L=—-2F
4

1
WPt = 5 (0,AM)? (3.1)

where F,, = =0,4, —0d,A,, (u,v=0,1,..,d) and the
repetition of index means the sum from 0 to d. We use
Minkowski metric g** = (+1.-1,...,—1) and g"' =0
for u # v. The second term in eq. (3.1) is a gauge fixing
term and ¢ is a covariant gauge fixing parameter. In
the continuum theory, this term is required to fix the
gauge. In Sec. 5, we will discuss the gauge symmetry of
the U(l) gauge field on finite elements.

The equation of motion is the “second” order partial
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differential equation,
2,0 A* — (1 - ;) 9HI,AY =0 . (3.2)

As mentioned in Sec. 2, we perform the linear
approximation for field operators. In order that the
linear approximation is meaningful, we rewrite eq.
(3.2) to a set of the coupled, “first” order partial
differential equations,

El =a,4%, (3.3)
vl _ _ l UEV —
avEL - (1 f)a EV=0 . (3.4)

The canonical quantization method is applied to this
system. The conjugate momentum of A is, from eq.
(3.1),

Tk = GHAO — 9OAH — ghO %OVAV (3.5)

For the dynamical variables A* and m#, the canonical
equal time commutation relations are

[AR(t, %), ¥ (t, )] = ig" D (E - ) , (3.6)

[AE(t, %), AV (t, V)] = [4(t, ), v (t, )] =0 , (3.7
where %, 7 are d-dimensional vectors and 6@ (¥ — )
is the d-dimensional Dirac §-function. A set of egs.
(3.3)-(3.7) describes the quantized U(1) gauge field
theory.

In eq. (3.3), we have introduced E!. The equal
time commutation relations between EY and A*, E!
and ©#, EY itself, are derived from egs. (3.6) and (3.7)
using egs. (3.3) and (3.5). The results are

[A1(t, %), EQ(t, )] = —iEg"8 D (% —F) , (3.8a)
[44t, %), Eit,P)] = —igtis@@—-75) ,  (3.8b)
[A#(t, %), Ef(t, )] =0, (3.8¢)
for EY and A#,

[E9(t, %), m°(t, )] =0, (3.92)
[ES(t, %), mi(t, )] = —id) 6D (& - ) , (3.9b)
[Ei(t,2), n°(t, )] = ig™d? 6@ @ -3) ,  (3.90)
[EP (6, %), nV(t, )] = —igP* 9} s D F —7) , (3.9d)

for EY and m#, and
[ES(t, %), E5(t, )] = (3.102)
[ES(t, ), Ei(t, )] = —l(f - 187D -3) , (3.10b)
[E(t, %), EJ(t.9)] = (3.100)
[Ef (8, %), E§(t,9)] = tfg"oayr?(d) @-%, (3.10d)
|EF (), Eye.5)| = igP9)6@G-5) . (3.100)
[Ef (6, %), B (t,9)] = (3.100

for Ef itself.

4. The equation of motion on the finite element

According to the prescription mentioned in Sec. 2, we
formulate the (d+1)-dimensional U(l) gauge field on
the finite element by using eq. (2.2).

The linear approximations for A*(x) and EX(x) are

AM(x) = B Moo o + (D=} Abn—g) | (@4D)

EL () = T Mo{es + D=} Bin—e) . (4.2
We require egs. (3.3) and (3.4) to hold at the center of
the finite elemente ag =% , (s=0,1,---,d) . We
substitute egs. (4.1) and (4.2) into eqs. (3.3) and (3.4),

and obtain the coupled equations for A*(x) and E.(x),

e} % E§(n—¢) = Z{g} A”(n -g), (4.3

X % Ef(n—¢) = Z{s}

—-g, @49

Z{g} 2 B - &) — 5 iy S B — )

- (1 - 9 Ze) % 9o E,-j(n —&)=0, (4.5
Sie S B — &) — Zho iy T2 Ef(n—e)
(1_‘) S E B — ) + B El(n— )} =0 .

(4.6)

a
we put ag =—

In deriving the above equations, >

and used an identity, {ss + (—1)5 i} = %, which holds

irrespective of &;. From egs. (4.3)-(4.6), we derive two
types of the coupled equations. The first one shall be
used for obtaining the one-time-step solution, and the
other shall be used for discussing the gauge symmetry

and the dispersion relation.

4.1. Time evolution equations for A* and E;,

We separate the terms at time n, and the ones at
time ng—1 in eqs. (4.3)-(4.6). Then we obtain the
following time evaluation equations of A* and EY,

-9}

Lii— &) ——Al(ng —1,ii— &)}, (4.1
0

1 - 1 -
Se (5B (no, = &) = - Ak(no

= Ye{—3Ef (no —

1 - —1)% =
e (5Bl (ng, 7 — &) = S Ak (no, i - )
1 u — (-D& —
= ZE{_EEi (ng—1,n—-298) +TA”(n0 -1,n-8},

(4.8
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- o N
a Ej (o, — &)

11 N
Zg{ga—oES(no,n—E)—Zle
(1= =X E] (ng, 7 — )}
& ay J=17j 0 ’
(-1

)% q
= EJ-O(nO —-1,1—-9)

J

= 5ol LB - 19+ 5,
~(1 =D B (o~ 1i-8), (49

(=D o
a; Ejl(no n— é’)

1 - -
Yz {a—oEé(no,n -8 - Z?:l

1\ (-1)% - j =
+(1-3) S B (g, 7= ) + By B (g7 - D))

ai

DY i =
a Ejl(no —1,n—§)

1 5 -
= Selh B~ 17 D + Ty

A

1\ (1)
—(1—3)( a) (EQ(ne — 1,7 — &)

+39E (e - 1LA-8} . (4.10)
Now we introduce a Fourier transformation,
— 1 N N
fno,m) = -5 Yhoie Puflngp) . (4.11)

satisfies a periodic boundary condition,

f(ng, 1)
f(ng, 1) = f(ny,n+M7), where i =1,2,-,d and 7 is
the unit vector for i-direction. Using eq. (4.11), we
transform A*(ny, 7 — &), A¥(ng— 1,7 —8), EY(ny,7n—
) and E,(no—1,1—&) to At(ny,p), A (ny—1,p),
EN(ny,p) and Ef(nyg—1,p). Thus the coupled time

evolution equations of A*(ny,B) and Ef(ny,p) are
1 T > e =
EE(‘)l(no: p) — oA (ng, P)
= _igg(no —1,p) —nodt(no — 1,p) , (4.12)
1o o
EEi (ng, p) — n;A*(ny, P)
= —2Bl(ng — 1,5) +nod*(ng — 1,B) , (4.13)
1 r~ = — -
EYIOE(())(TLO, p) — 2}1=1 T]jE]-O(nO, p)
1 = .
-(1- E)no Z}i=1 Ej] (no,P)
= t10ES(no ~ 1,B) + oy m;Ef (no — 1,5)
~(1 = o £f=1 B/ (no = 1,5, (4.14)
n0E§(no, B) — Z?=1 TIjEji(no, )
1 icm . =) »
(1 = D ES o, B) + Bior B (0, )

=noE5(no — 1,9) + Z?=1 TIjEji(no -1,p)

1= DB e — 1LH) + Ty B/ (g — 1), (4.15)

where we put

= =210 €,
Ep5r (D7
. M
(_)) Yze @ —itanpg;
Mo =_— Mip) = —am —
a deLEpM a;

(4.16)
Eliminating EQ(ng,p), we obtain the coupled time

evolution equations for A*(ng,p),

1 e > 1 i >
[£7% = S n?] Ao B) — (1 = Do iy A7 (o, )

1 = S 1 = j S
= ETIOE(())(nO -1Lp)— (1 - E) Mo Z?:l Ej] (no—1,p)

1

+[;

03+ 32| A%y — 1,)

1 " S
+(1-PnoXim Ao - 1), 41D
[72 = 4, n?]Ai(no, B) — (1 = 2) nineA®(ng,

0 j=11j no, D) z n'10A° (no, D)
—(1=3) 0 2y n; AV (no, B) = noEé(ng — 1,7)
7)1 Zj=1Tl] 0, P) = MNoLoNg P

o R 1\ ; = R

+[f + S mf 1A (o = 1.5) = (1= ) n'noA° (no = 1,5)

+(1- %) Ny A~ 1,5 . (4.18)

We call eqs. (4.17) and (4.18) “the first type coupled

equations”. We will solve these equations in Sec.7.

4.2. Time evolution equations for A*

Next we derive the coupled equations for A* only,
which are called “the second type time coupled
equations”. We eliminate all Ef' from egs. (4.3)-(4.6).

At first, we define the following two operators,

Vf() =fn+p)—fn) , (4.19)

and
V) =fn+@D+fmn) , (4.20)
where u=0,1,--,d and n=(ngny,-+,ng) . f is a

unit vector in p-direction. The relation,
VY, f(n—e) =V, 3 (D f(n—e) , (4.21)
is very useful.

Then, by operating [[%,V, on eq. (4.5), we obtain

1 = .V
£ (151 Vo) 2 Xy g (n — )
~ _V;
- E?zl(ngz? Vs) a_j,z{e} EJ’0 (n—e¢)

~(1-7) SIS V) 2R B (n—e) =0 . (422)

Substituting eqs. (4.3) and (4.4) into eq. (4.22), we have
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= Vi -1
—zle(nzzovs)a—{z{g}( 240 - e)
s#j 7

(-

On the other hand, eq. (4.6) is rewritten as

—_ Vo v .
?=1(H?=1.Vs)a_oa_jz{s}f”(” —£) =0 .(4.23
s#j

Z{a} Eo(n &) —Xi- 12{5} —€)
Jj#i
+(1-7) Zig S -0 13 © )

+(1__)Z{s} 1 12] 1E}(n_8)}_ 0.

j#i
As before, by operating [[¢,V, and using egs. (4.3)
and (4.2), we obtain the result

Hs 1v (n &)
= V; 1% ~;
_Z] 1Hs OV ].2{5] ¢ a? Al(n—s)
JE Ss#j 7
AN § (A AR O(p —
+(1-3) IR POCEUCED
Hs 0V Z{s
+(1—-)Z, 1115= Z{S}A’(n—s)—o
J#i S*U

(4.24)
Now eqs. (4.23) and (4.24) are the coupled equations
for A* only. Using these equations, we will discuss

about the gauge symmetry and the dispersion relation.

4.3. Time evolution equations for of T (n,, D)

The coupled equations of m#* are formulated on the
finite element here. The linear approximation for m#
is

() = B Mo fes + (CD5 S} mt(n—g)  (4.25)

as eqs. (4.1) and (4.2). We substitute eq. (4.25) into eq.

(3.5) and put a, = 5 . Then we obtain

ey (n—e)
12T “Ain-2)=0 ,  (4.26)
(n—e)
+ T S Al - )=0 (4.27)

The terms which are defined at time n, and ny—1

are separated such as

ey (no, 7~ ) +§zg o A°(ng, i~ ©)

+%2;1=12§ _g)

== ey~ Lii = &) +%e o A'(no — L7~ )
0

—13L. 3 % Amy-1,7-8), (4.28

Tesmi(ng i — &) + Te S A (no, i - &)

1 4 - 1 -
+Z§a_0AL(n01n - é’) =- ZEE”l(no - 1,7'1 - é’)

-5 = 1)‘A‘)( no — 17— &) + T Al(ng — L, — &) .
0

(4.29)
They are Fourier-transformed by eq. (4.11) into

—ﬂo(no'l))*” 2,4 o NuA* (1o, B)

= —iﬁo(no -1,p)+ %Zﬁﬂg”"r]ﬂﬁ”(no -1,p) . (4.30)

%ﬁ'i(no' B) — 'A% (ny, P) + noAt(ny, p)

1_. o
= — 3y = LF) +1'4%no — 1,7)

+noAi(ny —1,p) . (4.31)
Equations (4.30) and (4.31) are the coupled equations
of 7t#(no, P).

4.4. Relations among A*(ny, B),
and E!(n,, p)
We have defined EX'(x) and ##(x) by eqgs. (3.3) and

(3.5) respectively. Here, according to the prescription

" (no, P)

mentioned in Sec. 2, we construct relations among
At (ng, ), i*(ny,p) and Ef (ng,p). As we have shown
already, we get the relation between Ef'(n) and A*(n),

eq. (4.3), from eq. (3.3). On the other hand,
substituting eq.(3.3) into eq. (3.5), we have

n°(x) = ~ £ S0 Bf () (4.32)
and

mi(x) = —E)(x) — Eb(x) . (4.33)

Substituting eqs. (4.2) and (4.25) into eqs. (4.32) and
(4.33), we obtain

Ygrln—¢) = _%ZLOZ{;}E;I: (n—¢g) (4.34)

and
Z{S}Tri(n —&)=—Yg EP (n—¢)— e Ef(n—e¢) .
(4. 35)
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In the case of the continuum theory, the relations
among A*(x), m*(x), and E!(x) are defined locally.
However, they are defined in the form of recursion
relations on the finite element. In order to get relations
among these variables at any fixed time directly, we
use the technique of the Fourier transformation.

Under the transformation as
_ 1 m 1 M —iwny—ipA= z ~
f@) = L% do Sl e W f(,5)
(4.36)

1 1 —inp &
=— [l do i e f(P)

where Py = wy, P; = p; %T, eqs. (4.3), (4.34), and (4. 35)

are transformed into

Ey(P) = 2&,(P)A*(P) , (4.37)
~ 1 -~
w°(P) = — ¢ Xi—o By (P) (4.38)
#i(P) = —EX(P) — E{(P) , (4.39)
where
ey eigvpv(_;_)£v —itanty
fV(P) = Ye eisvl’vv = a, = fﬂ = Zg:og”va . (4-40)

f(P) in eq. (4.36) is related to f(ng,p) in eq. (4.11) by
f(no.p) = o[ dwe @ f(P) (4.41)

Applying eq. (4.41) to eqgs. (4.37), (4.38) and (4.39), we
get

Ei’l(nO! 5) = Zfi(ﬁ)A#(nO! 5) ’ (442)
70(no,B) = ~ ¢ Lo Bl (n0,5) (4.43)
#l(no, p) = —EP(no, P) — Ei(no,p) . (4.44)

Notice that the difference between the variables p
and P = (Py,p) which are define at the below of eq. (4.
36).

4.5. Additive note

Both types of the coupled equations are equivalent to
each other. We see how the field operators at any
time are determined from the ones at an initial time in
the both cases.

1) The first type coupled equations:

We express A*(ny,B) , #*(ny,B) and EX(n,,p) in
terms of the same quantities at the previous time n, —
1. We can show A*(ny,p) in terms of A*(ny,—1,7)
and EY(ny—1,9) using the first type coupled
(4.17) and (4.18).
known from A*(ng,p), A*(ny — 1,p) and #°(n, — 1,7).

equations Then #°%(ng,p) is

Once A*(ny,p) and ##(ng,p) are known, the coupled
equations (4.42), (4.43) and (4.44) are solved for

EY(ng, 7). Thus, it follows that A¥(ny,B), (g, B)
and Ef(ng,p) are determined from A*(n,—1,p9),
fit(ng —1,p) and El(ny—1,p). By iterating these
steps, we obtain AH(ng,p), *(ny,p) and EX(n,,p) at
any time.
ii) The second type coupled equations:

Because eqgs. (4.23) and (4.24) contain A*(ny + 1),
A*(ny) and A*(ny—1), A*¥(ny+1) is found once
A*(ny) and A*(ng — 1) are known.

equation of motion for A*(x) is the second order

Originally, the

differential equation. When we solved the equation
A*(x) and
0pA*(x) at initial time are needed. It means that
A*(ny) and A*(n, — 1) are needed in the method of
finite element. Next, if m#(ny) is given, n#(ny + 1) is
known from m#(n,), A*(ny+ 1) and A#(n,y) through
egs. (4.28) and (4.29). Thus A#(ny + 1) and m#(ny + 1)
are determined by the initial conditionA#(ny), A*(ng —
1) and m#(ny). By the iterations, we obtain A*(n,)

and m*(ny) at any time.

regarding as the time evolution equation,

5. The dispersion relations

For the gauge field, there is no doubling problem in
the standard lattice gauge theory. Here, to make sure,
we investigate the dispersion relation of the U(l) gauge
field.

At first,

transformed into

in the continuum case, eq.(3.2) is

—p2Ar@) + (1 =) p* Thopy V@) =0 (5.1)

1
(2n)d+1

At(x) = [dH*tpArt(ple~P*,  (5.2)

From eq. (5.1), the dispersion relation,
p2 =0, (5.3)
is obtained.
In the case of the U(l) gauge field on the finite
element, using the Fourier transformation eq.(4.36),

we get directly

Efg - ;‘1=1 512] A(w,p) - (1 _9 ;‘1=1fofj14j(w’5) =0

(5.4)
and
|:E§ - Z}i:l 512 Ai(w' ﬁ) - ifiZAY(w’ ﬁ)
J#i
~(1-2) ¢ B 6 A4, P) = 0 (5.5

’EQ}
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from eqgs.(4.23) and (4.24) respectively, where &, is
defined by eq.(4.40). Egs. (5.4) and (5.5) are collected

into the form of

[€2 - Y9, £2] A (w,B)
- (1 - ?) 4 0 ghPE, T & A (w,8) =0 . (5.6)

From eq (5.6), the dispersion relation of the U(1.)
gauge field on the finite element,

g-3d,2=0 5.7)
is obtained. In the naive continuum limit, eq. (5.7)
leads eq. (5.3).

6. The gauge symmetry of the U(l) gauge field on the
finite and the necessity for the gauge fixing term

In constructing the U() gauge field on the finite
element, we have started from the equation of motion

with the gauge fixing term in the continuum theory as

eq.(3.2). If we put % = 0, the corresponding continuum

theory is gauge symmetric. Then the symmetry should
be reflected in the U(l) gauge field theory on the finite
element. We construct the gauge transformation on a
finite element and verify that the equation of motion is
invariant under its transformation using the second
type equations of motion (4.23) and (4.24).

In the continuum theory, the equation of motion
eq.(3.2) with %:0 is invariant under the gauge
transformation,

AF () =A“(x)+§6“6(x) , 6.1)

where g is the U() coupling constant and 6(x) is a
local gauge function. Substituting eq.(4.1) for 6(x)

0(x) = Tg Mo fes + (D52} 6(n—2)  (6.2)

into Eq.(6.1), and putting a, = %, we have
YAt (n—¢) =

S Al — 45 Ty g Tig X0 —2)  (6.3)

a

which is the gauge transformation of the U(1) field on
the finite element.
Next we show that eqs. (4.23) and (4.24) are

invariant under eq.(6.3). The invariance may be shown

in the momentum space as well as the coordinate space.

Here we work in the momentum space. By using

eq.(4.36), eq.(6.3) is transformed into

AR(P) = A”(P)+§§#§(P) . (6.4)

On the other hand, the equation of motion with the
gauge fixing term on the finite element in the
momentum space is already derived as eq.(5.6). From
eqs.(5.6) and (6.3), we have

S0 6 87N (@,5) — (1-7) 8 2806 47 (@, D)

= 12006 £V 2 E46(P)

Thus, if there is not the gauge fixing term, the
equation of motion (5.6) is invariant under the gauge
transformation eq.(6.4).

The reason why we have the gauge fixing term is the

same as the one in the continuum theory. From

eqs.(4.17) and (4.18), setting %= 0, the equations of

motion without the fixing term,

- Z?:l 77]2 AO(nO! ﬁ) — Mo ?:1 nj Aj(nO! ﬁ)
= N X1 ] (ng — L) + Xy n? A°(ng — 1,5)

+1o X1 Al (ng — 1,9) (6.5)
and

[76 — Zf=1n7 14" (o, B) — n'noA° (no, B)

—n' %51 n; A (no, B)

=noE{(no — 1,9) + [n§ + 2?:1 U?]Ai(no -1,p)

—n'neA°(ng — 1,p) + 1 Zj’i=1 njﬁ"(no -1,p)

(6.6)
are obtained. The quations (6.5) and (6.6) are brought
together in the more compact form,

Yoo 1" A, (n,B) = J*(no — 1,P) , 6.7)
where J° and J! denote the right hand side of eqs.
(6.5) and (6.6) respectively and

Iy =Xp-on,n"gy —n¥n, . (6.8)
If we can invert the matrix (I)), eq.(6.7) is solved.
However, det(I})=0 and (I¥)"! does not exist.
This 1s the
Zg=0 9, 9°gll — 9*9, in eq.(3.21). Thus we must require

same situation as the operator

the gauge fixing term.

7. The one-time-step solutions

By solving the first type coupled equations as egs.
(4.17) and (4.18), we obtain A*(n,p). Further we get
also 7#(ng,p) from eqs. (4.30) and (4.31).

Multiplying eq. (4.18) by n; and summing up for

index i, we get
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Z?:ﬂ?il‘ii(no:ﬁ) % ?:1 i Eé(no -1,p)
% Lo ding—1,5) +(1-
j=1j
e Ao~ 1.5)
_(1_9—21 12711’1701 A(no, B) . (7.1)

Substituting eq. (7.1) into Eq. (4.17) and solving for
A®(ng,p), we obtain

1
ﬂg—gZﬁl 7112'

AO(nOt ﬁ) = m TIOE(())(nO — 1‘ﬁ)
-1)n . .
+m LimEg(no — 1,P)
ng- Z n? ) )
~€ - D I Bl — 1)
(nu Z, 17]})
+ ne+2(é- 1)7702] 177] Z(Z] 171] Ao(n _1 p)
(770_2?:1711-)
+ O S m A~ 15 (7.2)

(n3-xd,n?)
Substituting eqs. (7.1) and (7.2) into eq. (4.18), we have

Al > (1_%)nin2 -0 >
A(no,P) = ——2 E8(ny — 1.5)
(n8-2im)
+rlo Z}i 111] EO(nO - 1 p)

E-D1'no  a 7 >
+———= Xj_1njEy(ng — 1,p)
() O
E-D(1-z)n'ng ~i S
(—)z Z 1Ej](n0 -1p
("0 I 1)

+2(€ 1)77 7]021 1771 AO(nO _ 1,5)
(n3-zi 1"1)

+ 7]0+21 i L Ai(ng — 1,5)

n5- 11]

Y2 . N
+% Z?zlnjAf(nO -1,p) . (1.3
(n-2ium})
Next eliminating A!(n,, p) in eq.(4.30) by eq.(7.1) and
further eliminating A°(ny,p) in its result by eq. (7.2),

we get
#0 0 2
(o, p) = —7°(ng — 1,9) — s‘ﬁ E3(no —1,p)
—2%2—71,1]221 i E§(no — 1,8)
_Z i 17
+2(1-3) g B Bl = 19)
_ 77021 1771 A _ =
4,,0 Z 2 s Ag(no — 1,p)
— Al —17
4o Zfln,zzl Midimg —1,p) . (7.4

Substituting eqs.(7.2) and (7.3) into eq.(4.31), we have

1o E(())(n() _Lﬁ)

(g, p) = —ft'(ny — 1, P)+§m

—2 Eo(no 1,p)

UH 271]

~2(1- 1)t T B (o — 1)

&) m3-2L n?
_n'm _
+4110 =5 ]Ao(no 1,p)
4-FA(nO—1p) ) (7.5)

The one-time-step solutions of the field equation are
given by eqgs.(3.8) — (3.10).
EN(ny, ) is determined automatically by solving

As mentioned Sec.4,

eqs.(4.37) — (4.39). By iterating these procedures, we

can obtain the field operators at any time.

8. The equal-time commutation relations on the finite
element and the consistency of quantization

We quantize canonically the U(l) gauge field on the
finite element. In this system, the dynamical variable
is A*(ny,7) and its conjugate momentum 7m#(ng, 7).

We demand equal-time commutation relations,

oy 1 s pye(d) 1
[4°P (ng, 1), ¥ (ny, M)] = ig” 6ﬁ:ﬁ; > (8.1)
[Ap(no,T_i), AV(nOI m)] =0 ) (8'2)
[T[p(no, ﬁ)i 7TV(”’O: m)] =0 ) (83)
where V is the volume of the d-dimensional

parallelepiped and 6%‘% is the d‘dimensional

Kronecker 8. The Fourier transformed version of these

relations are

. - - . a
[47 (o, ), 7" (mo, K)] = 19”80, 2 (8.4)
[AP (no, 5),14~V(n0, E)] =0 , (85)
[7° (no, B), @ (no, k)] = 0, (8.6)
by using eq.(4.11).
Then, we must ask whether the equal-time

commutation relations are consistent with the field
equations on the finite element or not. Thus, we must
prove the following consistency condition: When the
equal-time commutation relations are given at initial
time, the field operators at arbitrary time which are
developed according to the field equations must satisfy
the same relations.

This is one of major problems in constructing a

quantum field theory on the finite element. The proof
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for the U(1) gauge field to satisfy the condition will be
given in Sec.9.

Since the first type coupled field equations and these
one-time-step solution contain El(ng,p) , it is
convenient to derive the equal-time commutation
relations between AP(ny,p) and EY (no, E) , between
P (ng,p) and Ef(n,, E) and between E!(n,,P) ’s
themselves. These relations are obtained from eqs.
(8.4)—(8.6) using eqs. (4.42) — (4.44). The results are

- - = - . d
[4° (o, B), B3 (no,K)] = —igg°6S0, 2, (8.7a)

Mma

[4P (no, B), E§(no, k)] = —ig”idé,fi_)i — (8.7b)
[47 (no, B), EY (no, k)] =0 , (8.7¢)

for AP and Ej,
[E9(no, B), #°(no, k)] =0 , (8.82)
(B8, 5, 7!(n0, K] = 26, % (8.8b)

o - , . md
[Es(no, B), 7 (no, k)] = —219""771-(1))6;1_)?(7 , (8.8¢)

~ N - - 3 N d
[Ef (no, B), ¥ (no, k)] = Zlgp"ni(p)é‘g_)EM? , (8.8d)

for E[Z and 7Y, and
[E'(())(nOJ ﬁ)! E(())(nOJ E)] =0 )

(B8 o, ), Ed(no, )] = 2iC6 — D)6, % (8.9)

(8.92)

[Eé(no, ﬁ)l E({(nor ]_é)] =0 5 (89C)
= = - . . d

[E7 (no,B), E§ (o, k)] = ~2i€g°ni(5)6. 2, - . (8.90)
= R - . . . d

[Ef (o, B, Bi(mo, K)] = —2i697n; $)6L” 5=, (8.9¢)
[Ef (0, B), E} (no, k)] =0 , (8.99

for Ef ’s.  Notice the correspondence with the
equal-time commutation relations egs.(3.8) — (3.10) in

the continuum theory.
9. The proof of the consistency on quantization

It 1s proven by direct calculations that the
canonically quantized system of the U(1) gauge field on
the finite element satisfies the consistency condition
on the quantization. Those calculations are direct but
very lengthy and tedious. We will restrict ourselves to
giving an outline here.

At initial time ny — 1, we require the equal-time
commutation relations (8.1) —(8.3). Then eqs.(8.7) —
(8.9) at time ny — 1 hold automatically as shown in

Sec.8. Using these relations and the one-time-step

solutions egs.(7.2) —-(7.5), we confirm the equal-time
commutation relations (8.1) —(8.3) to hold at time n,
and find that the gauge dependence disappears. Then
eqs. (8.7) —(8.9) at time n, hold automatically. Thus
the equal-time commutation relations (8.1) —(8.3) and
(8.7) —-(8.9) are preserved in developing one-time-step.
By iterating this procedure, it follows that the
equal-time commutation relations at any time is kept

to be invariant.
10. Conclusion and discussion

The results obtained in this paper are the followings.
The two types of field equations, which were
equivalent each other, were derived. Using the second
type equations, we exhibited the dispersion relation
which has the desirable continuum limit, and further,
showed that the equations have the gauge symmetry
on the finite element which was constructed by
applying the method of the finite element to the
continuum case directly. Next, the first type field
equation was solved and using its solution, we proved
directly that the consistency condition is satisfied.

The remarkable point of our formulation for U(1)
gauge field is that the gauge field space is non-compact
and the gauge fixing is needed. In a sense, it might be
said that this formulation is more nearer to the
continuum theory than the standard lattice gauge
theory with respect to the properties of the theory.

The coupling to a matter field is very important.
An investigation of the matter coupled gauge theory in
(d+1)-dimensional space-time is now in progress.

Finally we also should extend the formalism to the
non-Abelian case. The interesting attempt has been
done but still now it is not satisfactory because these
formalism include the link variable.[10] The more
should be

non-compact form. This is an important future

desirable formalism formulated as

problem.
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Quantized Pure U (1) Gauge Field Theory on Finite Element
in (d+1)-Dimensional Space-Time

ol E OB zasemiosmasceEE (s

(d+1) KITHEZH DA REHRZ LT, M2UOEEE 7 — VMR 50 FERZ MRS 5. HO X T HRE
FERIESMMEL, ENOAEIE 2 DEBIRZ RO Z L 2R S OICHMER LG0T AE R 22H Eo 7 —
TR L T A R L, S VEEPLETH LI E TR T, SHIC BOHTEREH I LIZL T,
ELICE T 2 WP 2 EN T %,






