<table>
<thead>
<tr>
<th>著者</th>
<th>松村素二</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>奈良学芸大学紀要</td>
</tr>
<tr>
<td>卷</td>
<td>1</td>
</tr>
<tr>
<td>号</td>
<td>3</td>
</tr>
<tr>
<td>発行年</td>
<td>1952年3月20日</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10105/5175</td>
</tr>
</tbody>
</table>
Über Eiflächen und Eikurven (I)

Sōji MATSUMURA
(Nara Galugoi Universität)

(1) Aus des Verfassers Arbeit(1) kann man wissen, dass

\[\frac{1}{2\pi} \int_{0}^{2\pi} \frac{\rho}{p} \, d\varphi \geq 1 \]

entsteht; daraus folgt

\[\frac{1}{2\pi} \int_{0}^{2\pi} \left(1 + \frac{p''}{p} \right) \, d\varphi \geq 1 \]
oder

\[\frac{1}{2\pi} \int_{0}^{2\pi} \frac{p''}{p} \, d\varphi \geq 0. \]

Aus

\[\frac{1}{2\pi} \int_{0}^{2\pi} \frac{\rho}{p} \, d\varphi \geq 1 \]
folgt

\[\frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{1 + p''/p} \, d\varphi \geq 1 \]
oder

\[\frac{1}{2\pi} \int_{0}^{2\pi} \left(1 + p''/p \right)^{-1} \, d\varphi \leq 1 \]
oder

\[\frac{1}{2\pi} \int_{0}^{2\pi} \left(p''/p \right)^{2} \, d\varphi \geq 1 \]

...und

\[\frac{1}{2\pi} \int_{0}^{2\pi} \left(p''/p \right)^{2} \, d\varphi \geq 1 \]

Wenn \(p : \rho = \text{const.} \) immer ist, so folgt

\[p : \rho \equiv 1, \quad \rho : p \equiv 1, \]
so muss \(\rho = p \) sein; daraus folgt, dass unsere Eilinie (E) ein Kreis ist, so folgt der

Satz: Gilt \(p : \rho = \text{const.} \) immer, so muss (E) ein Kreis sein. Wir betrachten

\[\int_{0}^{2\pi} \frac{\rho}{p} \, d\varphi, \]
und

\[\int_{0}^{2\pi} \frac{\rho}{p} \, d\varphi, \]

so folgt nach Brunn's Satz (2)

\[(2\pi)^{2} \equiv \left(\int_{0}^{2\pi} \frac{\rho}{p} \, d\varphi \right)^{2} \]

Von

\[\frac{1}{2\pi} \int_{0}^{2\pi} \frac{\rho}{p} \, d\varphi \equiv 1 \]

in des Verfassers Arbeit (3) gilt das Gleiche.

Aus (9) und (11) folgt (10)
Aus (10) und (11) folgt (9). Anstatt (11) kann (9) und (10) nach Berwald’s Satz (4) anwenden.

(1) wir betrachten

\[\frac{1}{2\pi} \int_{0}^{2\pi} \frac{\rho}{p} \, d\varphi \equiv 1 \]

in des Verfassers Arbeit (6) so folgt aus (1)

\[\left(\frac{\rho}{p} \right)_{\text{Max}} \equiv 1 \]

daraus entsteht

\[(p)_{\text{Max}} : (\rho)_{\text{Min}} \equiv 1 \]
oder

\[(p)_{\text{MAX}} \equiv (\rho)_{\text{MIN}} \]

Es folgt der

Satz: In der Eilinie ist der Maximumwert von \(p \) nicht kleiner als der Minimumwert von \(p \).

Aus unsern Beziehungen

\[\frac{1}{2\pi} \int_{0}^{2\pi} \frac{\rho}{p} \, d\varphi \equiv 1, \]

Kann man leicht

\[(2\pi)^{2} \equiv \int_{0}^{2\pi} \frac{\rho_{1} \rho_{2}}{\rho_{1} \rho_{2}} \, d\varphi \]

erhalten, denn (6)

\[\int_{0}^{2\pi} \frac{\rho_{1} \rho_{2}}{\rho_{1} \rho_{2}} \, d\varphi \equiv \int_{0}^{2\pi} \frac{\rho_{1} \rho_{2}}{\rho_{1} \rho_{2}} \, d\varphi \]

\[\times \int_{0}^{2\pi} \frac{\rho_{1} \rho_{2}}{\rho_{1} \rho_{2}} \, d\varphi \]

Journähl of Nara Galugoi University, vol. 1, No. 3, March 20th, 1932

wo

\[f_1 = \frac{p_1}{\rho_1}, \quad f_2 = \frac{p_2}{\rho_2}, \quad \psi_1 = \frac{\rho_1}{p_1}, \quad \psi_2 = \frac{\rho_2}{p_2} \]
gesetzt ist.

Weiter erhalten wir den folgenden7)

Satz: Ist \(p_2(\psi) > 0 \) in \((0, 2\pi)\) für zwei Bilinien \((E_1)\) und \((E_2)\) in \(R^2\) und besitzen

\[
\begin{align*}
\left\{ \begin{array}{l}
\frac{p_1(\psi)}{p_2(\psi)} - \frac{p_1(\theta)}{p_2(\theta)} = F(\psi, \theta), \\
\frac{\rho_1(\psi)}{\rho_2(\psi)} - \frac{\rho_1(\theta)}{\rho_2(\theta)} = \Theta(\psi, \theta)
\end{array} \right.
\end{align*}
\]

für alle \(\psi, \theta \) in \((0, 2\pi)\) stets dasselbe oder verschiedene Vorzeichen, dann ist

\[
\begin{align*}
\int_0^{2\pi} p_1 \rho_1 \, d\psi & \geq 0, \\
\int_0^{2\pi} p_2 \rho_2 \, d\psi & \geq 0
\end{align*}
\]
oder

\[
S_1 S_2 \geq (\text{oder} \leq) \int_0^{2\pi} p_1 \rho_2 \, d\psi.
\]

wo \(S_1 \) und \(S_2 \) der Inhalt von \((E_1)\) bzw. \((E_2)\) sind.

Setzen wir

\[
f = \frac{p}{\rho}, \quad \psi = \frac{\rho}{p}, \quad dx = d\psi,
\]
in Schwalzsche Gleichung

\[
\int \int a^2(x) \, dx \int a^2(x) \, dx = \left(\int a f(x) \, dx \right)^2,
\]
so folgt

\[\int_0^{2\pi} \left(\int_0^{2\pi} a^2 \, dx \int_0^{2\pi} a^2 \, dx = \left(\int a f(x) \, dx \right)^2 \right) \]
so folgt (5) aus (15) und (6) oder (6) aus (15) und (5). Setzen wir

\[
\begin{align*}
f_1 &= p_1, \\
f_2 &= p_2, \\
\psi_1 &= \rho_1, \\
\psi_2 &= \rho_2,
\end{align*}
\]
in (8), so folgt

\[
\int_0^{2\pi} p_1 \rho_1 \, d\psi \geq 0, \\
\int_0^{2\pi} p_2 \rho_2 \, d\psi \geq 0
\]
or

\[S_1 S_2 \geq \int_0^{2\pi} p_1 \rho_2 \, d\psi.
\]

Weiter erhalten wir den folgenden9)

Satz: Ist in \(\rho(\psi) p_\psi(\psi) > 0 \) in \((0, 2\pi)\) und besitzen

\[
\begin{align*}
\left\{ \begin{array}{l}
\frac{\rho_1(\psi)}{\rho_2(\psi)} - \frac{\rho_1(\theta)}{\rho_2(\theta)} = F(\psi, \theta), \\
\frac{\rho_1(\psi)}{\rho_2(\psi)} - \frac{\rho_1(\theta)}{\rho_2(\theta)} = \Theta(\psi, \theta)
\end{array} \right.
\end{align*}
\]

für alle \(\psi, \theta \) in \((0, 2\pi)\) stets dasselbe oder verschiedenen Vorzeichen, dann

\[
\begin{align*}
\int_0^{2\pi} p_1^2 \, d\psi & \geq 0, \\
\int_0^{2\pi} p_2^2 \, d\psi & \geq 0
\end{align*}
\]
or

\[
S^2 \geq (\text{oder} \leq) \int_0^{2\pi} p_1^2 \, d\psi \int_0^{2\pi} p_2^2 \, d\psi
\]
wo \(S \) der Inhalt unserer Eilinie \((E)\) ist. Weiter erhalten wir die folgenden Sätze:9)

(1) Wenn \(B \), so wie

\[\left(\int_0^{2\pi} p_1 \rho_1 \, d\psi \int_0^{2\pi} p_2 \rho_2 \, d\psi \right) = 0
\]
besteht, so entsteht

\[\left(\int_0^{2\pi} p_1 \rho_1 \, d\psi \int_0^{2\pi} p_2 \rho_2 \, d\psi \right) \] oder

\[\int_0^{2\pi} p_1 \rho_2 \, d\psi \int_0^{2\pi} p_2 \rho_1 \, d\psi \]

(2) Bestehen

\[\left(\int_0^{2\pi} p_1 \rho_1 \, d\psi \int_0^{2\pi} p_2 \rho_2 \, d\psi \right) \]

(3) Besteh B in

\[\left(\int_0^{2\pi} p_1 \rho_1 \, d\psi \int_0^{2\pi} p_2 \rho_2 \, d\psi \right) \]

(4) Nach Brunns Satz9) ergibt sich
(28) \((2\pi)^2 \equiv \left(\frac{2\pi}{p} \right) \left(\int_0^p \frac{1}{p} \, d\varphi \right) \)
so folgt (6a) aus (28) und (5) oder (5) aus (28) und (6a).

(5) Es besteht
\[
2\pi \equiv \left(\frac{2\pi}{p} \right) \left(\int_0^p \frac{1}{p} \, d\varphi \right) \left(\int_0^p \frac{1}{p} \, d\varphi \right)
\]
wo
\[
p > 1, \quad \frac{1}{p} + \frac{1}{q} = 1.
\]

(6) Wir haben
\[
2\pi \equiv \left(\int_0^p \frac{1}{p} \, d\varphi \right) \left(\int_0^p \frac{1}{p} \, d\varphi \right)
\]

(7) Man kann leicht wissen, dass
\[
\varphi \left(\int_0^p \frac{1}{p} \, d\varphi \right) \equiv \left(\int_0^p \frac{1}{p} \, d\varphi \right) \left(\int_0^p \frac{1}{p} \, d\varphi \right)
\]

besteht, u. s. w.

(1) Satz: Benutzen wir die Zeichen von Blaschke, so ist unsere Ellipse \((K)\) eine Kugel, wo in \((K)\)

\[
p=\pi H+bi+cH+d, \quad (a, b, c, d > 0), \quad s=R_1+R_2
\]
gilt, dabei \(a, c, \text{und} d \) die Konstanten deduziert.

Beweis: Es gilt
\[
G=\left\{ \int_0^p \frac{1}{p} \, d\varphi \right\} \left\{ \int_0^p \frac{1}{p} \, d\varphi \right\} \left\{ \int_0^p \frac{1}{p} \, d\varphi \right\}
\]

(7) Fujimori, a. a. O., S. 222.

(8) Fujimori, a. a. O., S. 222.

(11) Brunn, h., Sitzungsber. ak. München, 32 (1902), S. 91—112, 23 (1903), S. 205—212.

(12) Takesu, T., Dissertationer Gala Singi, I, S. 583, S. 586.