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Abstract

In this paper. we will prove that the highest Lyubeznik number Ay q(A) isx one if
A is a Cohen-Macaualy local ring containing a field. where d is the dimension of A.

We assume that all rings are commutative and noethervian with identity throughout
this paper.

1. Introduction

In this paper. we shall prove:

THEORENM 1. Let A be a local ving containing a field with dimension d. If A is ('ohen—
Macaualy. then we have Xgq (A) = 1.

The investigation of the structure of local cohomology modules Hy-(F) was ini-
tiated by Grothendieck and is a very interesting subject in a tield of commutative
algebra. where Y is a closed subscheme of a scheme X and # is a quasi-coherent
¢ x-module. Although several authors have developed very intevesting results and
deep theories (see. for example, [F1]. [F2|. |G1|. |G2|. |Hal|. [Ha3|. [Ha4|. |HaS].
|[HoR|. [HuK]. [HuL]|. [O]. [PS]. [Sh]). these modules are still very mysterious. For
finiteness property (for example. cofiniteness. finiteness of Bass numbers). several
results are known (see. for example. [D]. [Yo]. [DM]. [Me]. Nee also, |[Mo]. [T] and
[Ya] for results of local cohomology modules with supports in monomial ideals). In
particular. Huneke and Sharp [HuS] and Lyubeznik [L1] proved remarkable results
and further. Lyubeznik defined a numerical invariant of local rings with respect to
local cohomology modules |L1, theorem-definition +-1]:

Definition 1. Let A be a local ring of dimension d which admits a surjective ring
homomorphism 7: R — A, where R is a regular local ring of dimension n containing
a field. Set I = ker m and let m he the maximal ideal of R. Then the Bass number
Hp(m. Hf'(R)) is finite and depends only on A. i and p. but neither on R nor on 7.
We denote this invariant by A, ,(A). and we call this number the Lyubeznik number
(or the (p.i)-Lyubeznik number).
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A complete local ring containing a field is always a surjective image of a regu-
lar local ring containing a field. So. it A is a local ring containing a field. but not
necessm‘ilv a surjective image of a regular local ring containing a field. one can set
Apo(A) = Ay (A™), where A" is the completion of A with respect to the maximal ideal.
We recall some basic properties of Ay, (¢f. [L1. (44 i-v)]).

TuroreM 2 (Lyubeznik). Let A be a local ring of dimension d containing a field.
Then the following assertions hold:
(i) Ap(A)=0ifi>d:
(i) Ap.(A)=0ifp>i:
(iii) Aga(A) F 0:
( 7) if A is analytically normal. then Mg q(A) = 1:
(v) if A is a complete intersection. then Aga(A) = 1.

These results lead Lyubeznik to ask the following question [L1. question 4-5].
Question 1 (Lyubeznik). Is it true that Ay 4(A) = 1 for all A/

Recently Walther answered this question negatively |W. proposition 3-2]. using
the Brodmann sequence. whose rings are not C'ohen—Macaulay. So we refine the above
question as follows:

Question 2. Is it true that Ag 4(A) = 1 for (lohen-Macaulay rings A/

This is true for Cohen—Macaulay local rings A of characteristic p by the result of
[PS. proposition 4-1]. since the spectral sequence HE H}(R) = HET(R) degenerates.
In this paper. we affirmatively answer Question 2. that is we will prove that if A
is a Cohen—Macaulay local ring containing a field of dimension d. then the highest
Lyubeznik number A4 4(A) is one.

This paper is dedicated to Professor Yukitoshi Hinohara on the occasion of his
seventieth birthday.

2. Proof of the lemmas
Definition 2. Let A be a ring. For a positive integer k. we say that A satisfies the
Serre (Si)-condition if it holds depth(Ap) = inf (k, ht(P)) for all P € Spec(A) (cf.
[Mal. (17. 1). p. 125]).

Remark 1. Tf a catenary local ring A satisfies the Serre (5:)-condition. then A is
equidimensional, that is to say. all the irreducible components of X = Spec A have
the same dimension (ef. [Ha2. remark 2-4-1. p. 503]).

The following lemma is probably well known to experts.

Lenya 1. Let ¢: (A, m) (A, nt') be a local homomorphism of local rings A, A with
the maximal ideals m. nU. respectively. Suppose that the going-down theorem holds for ¢
(see |Mal. (5. A). p. 31] for the definition) and w" = mA. If the dimension of A is equal
to d, then the dimension of A" is equal to d.

Proof. First note that if I is an ideal of A. then the extension VIA’ of the radical
of T is contained in the radical vVTA’ of the extension of I. Let y,....x4 be a system
of parameters of A. Then the radical \/(zy,...,zq) is equal to m. It follows that
\/{:x:h.....:,{:d)A’ D V(xy,....xzg)A" = mA’ = m’. Since m’ is the maximal ideal of
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A’ we have J(x),....xq9)A7 = m’. Hence it holds that dim 4" < d = dim A. since

the arithmetic vank of m’ is not more than d. On the other hand. since m is the
maximal ideal. we have mA’ 1 A = nt. Nince the going-down theorem holds for ¢
and mA’ N A = m. we have the inequality htmt < htm’ by the definition that the
eoing-down theorem holds between A and A’ (¢f. |[Mal. (5. A). p. 31]). Then it follows
that dim A < dim A’. We therefore conclude that dim A = dim A’ = d.

We shall collect some results as lemmas for the proof of Proposition 1 and
Theorem .

LEana 2. Let (A.m) be a local ving with the maximal idead mi. Then the following
assertions hold:
(i) (AN mAN) is a local ring with the maximal ideal mA™:

(i) if A is Cohen-Macaulay (respectively regular), then A" is Cohen—Macaulay
(respectively regular):

(i) if A is a homomorphic image of a Cohen—Macaulay local ring and satisfies the
Serrve (Sy)-condition, then A" satisfies the Sevre (Si)-condition for a positive
integer k:

(iv) the natural map A — A" s a faithfully flat extension:

(v) if A= R/I for sume local ring R and an ideal I of R, thew it holds that AN =
A ST R

(vi) if the dimension of A is equal to d. then the dimension of A" is equal to d.

where A™ s the completion of A with respect to the marimal ideal m.

Proof. Statement (i) follows from [Ma2. theorem. section 8 (4). p. 63] and state-
ment (i) follows from [Ma2. theorem 17-5 (ii). p. 136] and [Ma2. lines 1314 in the
proof of theorem 195 (ii). p. 157]. Further. statement (iii) follows from |Ma2. ex-
ercises to section 23. 23-2, p. 185]. (iv) follows from [Mal. (4. A). corollary. p. 27]
and [Mal. (23. L). corollary L. p. 170]. and (v) follows from |[Ma2. theorem 8-11.
p. 61]. Finally. since the natural map A — A" is flat by (iv). the going-down theorem
holds between A and A by [Mal. (5. D). theorem 4. p. 33]. Therefore assertion (vi)
follows from Lemma 1.

LEMMA 3. Let (Aom) be « local ring with the maximal ideal w. Then the following
assertions hold:
(1) A" is a local ring with the maximal ideal mA*":
(ii) if A is Cohen-Macaulay (vespectively regular). then A" ix Cohen-Macaulay
(respectively regular):
(iii) if A satisfies the Serve (Sy)-condition. then A" satisfies the Serre (Sy)-condition
Jor a positive integer k-
(iv) the natural map A — A" is a faithfully flat extension:
(v) if A= R/I for some local ring R and an ideal I of R. then it holds that A" =
R.«!:/IR.-;J';:
(vi) if the dimension of A is equal to d. then the dimension of A*" is equal to d.
where A% s a striet henselization of A (see [G3. (18-8). p. 144] for the definition).

Proof. Statements (i) and (iv) follow from [G3. proposition (18-8-8) (i). p. 146]
and |G3. proposition (18-8-8) (iii). p. 147]. Statements (ii) and (iii) follow from |G3.
corollary (18-8-13) (a—c). p. 149]. and (v) follows from [Mil. p. 38. line 27|. Finally.
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since the natural map A — A iy flat by (iv). the going-down theorem holds
between A and A" by [Mal. (5. D). theorem 4. p. 33]. Therefore assertion (vi)
follows from (i) and Lemma 1.

Leysya 4, Let (A,m) be a local ring with the maximal ideal m. Let B be the ring
(AN, Then the following assertions hold:
(i) B is a local ring with the maximal ideal mB:

(i) if A is Cohen-Macaulay (respectively regular). then B is Cohen—-Macaulay
(respectively regular):

(iif) if A ix a homomorphic image of a C'ohen=Macauwlay local ring and satisfies the
Serre (Sy)-condition. then B satisfies the Serre (Sg)-condition for a pusitive integer
ki

(iv) the natural map A — B is a faithfully flat extension:

(v) if A = R/I for some local ring R and an ideal I of R. then it holds that B =
(RN IR ™)

(vi) if the dimension of A is equal to d. then the dimension of B is equal to d.

where A™ is the completion of A with respect to the maximal ideal, and A" is a striet
hewselization of A.

Proof. We only prove statement (iii). Repeating a similar argument. the other
assertions follow immediately from Lemmas 1-3. and {Mal. (4. B). p. 27].

Let R be a Cohen—Macaulay local ring which surjectively maps to a local ring A.
We denote the kernel of the surjection by I. Then A is isomorphic to R/I. It A
satisfies the Serre (Sy)-condition. then A" satisfies the SNerre (Si)-condition by (iii) of
Lemma 2. since A is a homomorphic image of a Cohen-Macaulay local ring R. Since
R is a C'ohen—Macaulay local ring. R" is also a C'ohen—Macaulay local ring by (ii) of
Lemma 2. Further A" is isomorphic to (R/I)" = R"/IR" by (v) of Lemma 2. Hence
A" is a homomorphic image of a (‘ohen-Macaulay local ring R”.

Since A7 satisfies the Serre (Si)-condition. (A")*" satisfies the Serre (S )-condition
by (iii) of Lemma 3. Since R" is a Cohen-Macaulay local ring. (R")*" is also a (‘ohen—
Macaulay local ring by (ii) of Lemma 3. Further (A”)*" is isomorphic to (R/I)")*h =
(RM®/I(R™M)®" by (v) of Lemma 3. Hence (A")*" ix a homomorphic image of a
(‘'ohen—-Macaulay local ring (R")*".

Now since (A")*" is a homomorphic image of a (‘ohen-Macaulay local ring (R")
and (A")*" satisties the Serre (Sy)-condition. B = ((A")*")" satisties the Serre (Si)-
condition by (iii) of Lemma 2. The proof of assertion (iii) is completed.

sh

LEMMA 5. Let (R, m. k) be a regular local ring of dimension n containing a field, and
I an ideal of R of dimension d > 1. If R/I satisfiex the Serre (S,)-condition. then the
Jollowing assertions hold:

(i) inj.dim, Hp 4R) = d:

(i) inj.dimg H{(R)<n—1—jifj>n~—d.
where inj.dimp, T is the injective dimension of an R-module T.

Proof. Statement (i) is straightforward from [L1. (4-4iii)]. so we only have to prove
the assertion (ii). We proceed in several steps.

Step 1. First we prove that the "Second Vanishing Theorem”™ holds for the local
cohomology module Hy(R). that is H{(R) = 0 for j > dim R — 1 (cf. [Sp. p. 143. line
15]).
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Nince 4 = R/I is a homomorphic image of regular local ring R. B = ((A")"™)" =
(R™))NJI((R™)™")™ ix also a homomorphic image of regular local ring ((R*)*")" by
(ii) of Lemma 4. If A = R/I satisfies the Nerre (Ss)-condition. then the local ring
B = ((AM)*M)" = ((R™M)¥)NJI((R™)*M)™ also satisfies the Nerre (S,)-condition by (iii)
of Lemma 4, and the dimension of B and ((R")*")" are equal to d and n respectively
by (vi) of Lemma 4. It follows from [Ha2. corollary 2-4. p. 503] that the punctured
spectrum of Spec (B) is connected. that is Spec A is formally geometrically connected
(see [HuL. theorem 2-9. p. 79] for the definition). Hence since the dimension of R/T
ix greater than one. we have H} (R) = H7~'(R) = 0 by [HuL. theorem 2-9. p. 79].

Ntep 2. Next we shall prove that H{(R)g = 0 for all prime ideals @ containing I
with dim R/Q 2 n —t —jand dim R/Q <d — 1.

Indeed. let @ be any prime ideal of R containing [ with dim R/Q =2 n —1—j and
dim R/Q <d—1I.
(@) Tf dim R/Q = n — | — j. then we have:

n—1—dim R/Q

dim R — | —dim R/Q
(dim R —dim R/Q) — 1
htQ — 1

dim Ry — 1.

J

W

by [Ma2. section 31 lemma 2. p. 250).
(b) Further since R/I satisfies the Nerre (Ss)-condition. R/ is equidimensional by
Remark 1. Hence it holds that

dim(R/1)g = htQ/I
= dim R/I —dim((R/1)/(Q/1)),

by [Ma2. section 31. lemma 2. p. 250] again. If dim R/Q < d — 1. then we have:

dim Ro/IRg = dim(R/]I)q

htQ/I

= dim R/I - (lim{(R/[)/(Q/I})
dim R/I — dim R/Q

d== g1

1,

Y

by |[Ma2. section 31. lemma 2. p. 250.

We note that the localization (R/I)g = Ry /I R satisfies the Serre (Ss)-condition
and Rq is also a regular local ring.

Now we consider the category of modules over the regular local ring Rg. It then
follows from Step 1 that the Second Vanishing Theorem holds for the local cohomol-
ogy module HfHQ(Rq). that is. H}(R)g = 0 for j > dim Ry—1and dim Rg/IRg > |
by (a) and (b). We obtain the assertion of this step.

Ntep 3. In this step. we shall prove that dim SuppH{(R)g < n — 1 — j under the
assumption that j > n —d.

Indeed. let @ be in SuppH7{(R). then we have H{(R)g = H;RQ(RQ) % 0. From the
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assumption j > n —d. we have
dmR/Q < n—1-j
< n—1—(n-—d
d— 1.

Il

It follows from Step 2(b) that dim Rg/IRg > 1. Then it holds that

J < dimRg—1
dim R —dim R/Q — 1
n—1—dim R/Q.

by the local Lichtenbaum—Hartshorne Vanishing Theorem and the Grothendieck
Vanishing Theorem for the local cohomology module H}(R)g = fffRQ(RQ} £ 0. It
therefore follows from Step 2 that dim R/Q < n — 1 — j for all prime ideals @ in
SuppH7(R). We then conclude that dim SuppHJ(R) <n —j — 1.

Step 4. Since the inequality inj.dimH7 (R) < dim SuppH{(R) holds by [HuS| and
|L1. corollary 3-6. p. 52]. the proof of the assertion (i1) ix completed.

3. Proof of the main results

PrOPOSITION L. Let R be a reqular local ring containing a field of dimension n, I an
ideal of R of dimension d > 1. If R/I salisfies the Serre (Ss)-condition. then we have
/\dd(R/I) =1.

Proof. The functor I';j( — ) takes injectives into I'y,( — )-acyelic objects in the cate-
gory of R-modules. So by Grothendieck’s speetral sequence. we obtain the following
spectral sequence (¢f. [G1. theorem A, p. 5]):

Ep? = HLHY(R) = H™ = H'(R).

nt m
The spectral sequence has the differentials as follows:
E:f ran—d—{l—r} - Ef,n—:f — Efn,u d—{l-—r]‘
We shall prove that all the differentials that come into and go out of E&"~9 are 0
for all » = 2.
Now it follows from |L1. (4-4). p. 54| that HYH;'(R) = 0 for all i > d and all
p = 0. On the other hand. we calculate as follows:

—(—d+(l —7)) = d—1+r
= d—1+2
= d+1
> d.

for r > 2. Hence we have Ey ™"~ 177 = gaer = =0(Ry = (. Ko it holds that
Edtrn=dtl=r) = ( for all # > 2. Thus it follows that the differentials B4 —
Edtrin=dt(1=7) aye ) for all + > 2.
From Lemma 5, we calculate as follows:
inj.dim H" """ R) < n—t1—-(m—d—(1-71))
= d-r

Hence we have Ej ™"~ 4 U7 = gd—rgr=4-U='N Ry = 0. So it holds that
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E'f—’"“ d=(l=r) = g forall 7 = 2. Thusit follows that the differentials Ef mra—d—(l-r) _,
Edn=d are 0 for all r > 2.

Further we have EF'?" =0 forallp > 0. ¢ 2 0 with p+ g = n, p < d by Lemma 5.
Since inj.dimHj (R) < dim SuppH{(R) < dim V(I) = d by [HuS] and [L1. corollary
3-6. p. 52]. it holds that E = 0 for all p 2 0. ¢ = 0 with p+ g = n. p > d. It then
follows that Es-terms are all (0 in the total degree n except Eg‘n_d.

e 1

We express Fs-terms in the above diagram (Fig. 1). The circles mean the vanishing
of Es-terms by Lemma 5. Furthermore all Eb-terms are 0 except the black circles.
. d.n—d .
Therefore the above spectral sequence collapses at E3" % and we have isomor-

phisms:

H#i H}:—d(R} — Ejm d
~ Ein ~dd
~ Hm
= HR(R).

Nince R is a regular local ving. H}(R) is isomorphic to E(k). where E(k) is the injective
hull of k. Since H"“iH;'_d{R} is 1somorphic to E(k). it therefore follows from |L1.

lemma 1-4, p. 44} that Agq(A) = 1. The proof of the proposition is completed.

Proof of Theorem 1. Completing the local ring A with respect to the topology de-
fined by the maximal ideal. there is a surjection R — A" from a regular local ring
R containing a fields to A" by C'ohen’s structure theorem. We denote its kernel by
I and the maximal ideal of R by m. A™ = R/I is also (‘ohen- Macaulay by (i) of
Lemma 3. Especially A” = R/ satisfies the Serre (S.)-condition by [Mal. (17. I).

p- 125, lines 8-9]. Therefore the theorem follows from Proposition 1.

COROLLARY 1. Let A be a local ring containing a field of dimension d > 1. com plete
with the topology defined by the maximal ideal. Tf A satisfies the Serre (S,)-condition.
then we have Agqa(A) = 1.

Proof. By Cohen's structure theorem. there ix a surjection from a regular local
ring R to A. Therefore the assertion follows from Proposition 1.
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Remark 2. 1f the dimension of a ring A ix equal to one. then it always holds that

A[\](A} =1.

Example 1. The converse of the theorem. the proposition and the corollary do not
hold in general. The following example is essentially due to Kazufumi Eto. Let R
be the localization of [z, Za. Ty. T4, T3, 4] bY (T1. 22, 23, Ty, 75, 16). T = (T4, L2, T4) N
(@2, T3, x4) N (@3 4. 25) N (T, x5, 206) N (5. 7. 7y) and P = (xy, T2, 24, L5, ). Here
we note that I is equidimensional and dim R/I = 3. Then we have dim(R/I)p = :
and IRp = (x(. 212, x3)Rp N (x5, z4. 1) Rp. It follows that the punctured spectrum of
Spec(R/I)p is disconnected. that is Spec R/ is not locally connected in codimension
one (see [Ha2. definition, p. 500] for the definition). It follows from [Ha2. corol-
lary 2.4, p. 503] that Spec R/I does not satisfv the (Ss)-condition and therefore R/T
is not (‘ohen-Macaulay.

On the other hand. Yanagawa shows that for pure square-free monomial ideals. the
highest Lyubeznik number is one if and only if the corresponding ring is connected
in codimension one (cf. [Ya. corollary 3:16]). The local space Spec R/I is connected
in codimension one and I is a pure square-free monomial ideal in R. Tt follows from
[Ya. corollary 3-16] that Ay 3(R/I) = 1. While he used the combinatorial argument to
prove [Ya. corollary 3-16]. one can find the direct proof of the result that Ay 3(R/I) =
1 in [EK]. by which we could point out that the earlier version of [Ya. corollary 3-16]
was in('{)l‘l‘ﬂ(’t-.
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