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Abstract

In this paper, we will prove that the highest Lyubeznik number \d,d(A) is one if
A is a Cohen-Macaualy local ring containing a tield. where d is the dimension ofA.

Weassume that all rings are commutative and noetherian with identity throughout
thispaper.

1. Introduction

In this paper, we shall prove:

Thkorkm 1. LetAbea localringcontainingafield with dimension d. IfA isCohen-

Macaualij. then ire hare \dci(A) = 1.

The investigation of the structure of local cohomology modules HY{-^) was ini-
tiated by (Jrothendieek and is a very interesting subject in a field of commutative
algebra, where Y is a closed subscheme ofa scheme A' and dF is a quasi-coherent
d^Y-module. Although several authors have developed very interesting results and
deep theories (see. for example, [Fl]. [F2|, |G1|. |G2|. [Hal|. [Ha3]. [Ha4J. [HaS],
|HoR]. [HuK]. [HuL]. [O|. [PS], [Shi), these modules are still very mysterious. For
finiteness property (for example, co finiteness. finiteness of Bass numbers), several
results are known (see. for example. [D], [Yo]. [DMJ. [MeJ. See also, [Mo]. [Tj and
[Ya] for results of local cohomology modules with supports in monomial ideals). In
particular. Huneke and Sharp [HuS] and Lyubeznik [LI] proved remarkable results
and further, Lyubeznik defined a numerical invariant of local rings with respect to
local cohomology modules [LI, theorem-definition 4-lj:

Definition 1. Let A be a local ring of dimension d which admits a surjective ring
homomorphism ir:R -> A, where R is a regular local ring of dimension n containing
a field. Set / = kervr and let m be the maximal ideal ofR. Then the Bass number
fj,p(m,Há"~l(R)) is finite and depends only on.4. i andp, but neither on R nor on tt.
Wedenote this invariant by XPtl(A). and we call this number the Lyubeznik number
(or the (p, z)-Lyubeznik number).
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A complete local ring containing a field is always a surjective image of a regu-
lar local ring containing a field. So, if A is a local ring containing a field, but not
necessarily a surjective image of a regular local ring containing a field, one can set
XP,,(A) = Xpa(AA), where AA is the completion ofA with respect to the maximal ideal.

Werecall some basic properties ofXPtl (cf. [LI, (4-4 i-v)]).

Theorem 2 (Lyubeznik). Let A be a local ring of dimension d containing afield.
Then the following assertions hold:

(i) Xp\t(A) =i)ifi>d:

(ii) \Pit(A) =0ifp>i;

(iii) Ad,d(A) + 0:

(iv) ifA is analytically normal, tlien Xd,d(A) = 1;
(v) ifA is a complete intersection, then Xd<d(A) = 1.

These results lead Lyubeznik to ask the following question [LI. question 4-5].

Question 1 (Lyubeznik). Is it true that Xd,d(A) = 1 for all A'.

Recently Walther answered this question negatively [W. proposition 3-2], using
the Brodmann sequence, whose rings are not Cohen-Maeaulay. So we refine the above
question as follows:

Question 2. Is it true that Xd,d(A) = 1 for Cohen-Macaulay rings A(

This is true for Cohen-Macaulay local rings A of characteristic p by the result of
[PS. proposition 4-1 1, since the spectral sequence H^H]{R) => H?+q(R) degenerates.
In this paper, we affirmatively answer Question 2. that is we will prove that if A
is a Cohen-Macaulay local ring containing a field of dimension d. then the highest
Lyubeznik number Xd,d(A) is one.

This paper is dedicated to Professor Yukitoshi Hinohara on the occasion of his

seventieth birthday.

2. Proofofthe lemmas

Definition 2. Let A be a ring. For a positive integer k. we say that A satisfies the
Serre (Sfc)-eondition if it holds depth(4p) > inf(k,ht(P)) for all P à¬ Spec(A) (cf.

[Mai. (17. 1). p. 125]).

Remark 1. If a catenary local ring A satisfies the Serre (S^-condition, then A is
equidimensional, that is to say, all the irreducible components ofX = Spec A have

the same dimension (cf. [Ha2. remark 2-4-1. p. 503]).

The following lemma is probably well known to experts.

Lemma 1. Let <j>: (A,m) -> (A', m') be a local homonwrphism of local rings A. A' with
the nm.rimal ideals m, m', respectively. Suppose that the going-down theorem holds for 4>
(see [Mai. (5. A), p. 31]forthe definition) andm' = mA If the dimension ofAisequal
to d. then the dimension ofA' is equal to d.

Proof. First note that if/ is an ideal ofA, then the extension \flA' of the radical

of/ is contained in the radical y/lA' of the extension of/. Let xt ij be a system
of parameters ofA. Then the radical t/(xj,...,xd) is equal to m. It follows that
\f(x\,...,x<i)A' 2 \/(xuT777xd)A' = mA' = m'. Since m' is the maximal ideal of
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A', we have \/(x\,...,xj)A' = lit'. Hence it holdsthat dimA' ^ d - dimA. since

the arithmetic rank of m' is not more than d. On the other hand, since m is the
maximal ideal, we have mA' C\ A ~ m. Since the going-down theorem holds for 4>
and mA' DA ~ m. we have the inequality htm ^ htm' by the definition that the

going-downtheorem holds betweenA andA' (cf. |Mal. (5. A), p. 31]). Then it follows
that dim A ^ dim A'. Wetherefore concludethat dimA = dimA' - d.

We shall collect some results as lemmas for the proof of Proposition 1 and

Theorem 1.

Lemma 2. Let (A,in) be a local ring with the >naximal ideal m. Then the following

assertions hold:
(i) (AA.mAA) is a local ring ivilh the maximal ideal mAA:

(ii) if A is Cohen-Macaulay (respectively regular), then AA is Cohen-Macaulay

(respectively regular);
(iii) if A i-s a homomorphic image of a Cohen-llacaulay local ring and satisfies the

Serre (Sk)-condition, then AA satisfies the Serre (Sk)-condition for a positive

integerk;
(iv) the natural map A -> AA is afaithfullyflat extension;

(v) //A = R/Iforsome local ringRandan idealIofR, then itholdsthat AA =
RA/IRA;

(vi) if the dimension ofA is equal to d. then the dimension of AA is equal to d.

where AA is the completion ofA with respect to the maximal ideal m.

Proof. Statement (i) follows from [Ma2, theorem, section 8 (4), p. 63] and state-
ment (ii) follows from [Ma2. theorem 17-o (ii). p. 136J and |Ma2. lines 13-14 in the
proof of theorem 19-5 (ii). p. 157|. Further, statement (iii) follows from |Ma2, ex-
ercises to section 23. 23-2. p. 185], (iv) follows from [Mai. (4. A), corollary, p. 27]
and [Mai. (23. L), corollary 1. p. 170]. and (v) follows from [Ma2, theorem 8-ll.
p. 61]. Finally, since the natiu-al map A -> AA is flat by (iv). the going-down theorem
holds between A and AA by [Mai, (5. D). theorem 4. p. 33]. Therefore assertion (vi)

follows from Lemma 1.

Lemma 3. Let (A,in) be a local ring with the maximal ideal nt. Then the following
assertions hold:

(i) Ash is a local ring ivith the maximal ideal mAsh:
(ii) if A is Cohen-Macaulay (respectively regular), then Ash is (\>lien-Macaulay

(respectively regular) ;
(iii) ifA satisfies the Serre (Sk)~condition. then Abh satisfies the Serre (Sk)~condition

for a positive integer k;
(iv) the natural map A -> Ash is afaithfullyfiat extension:

(v) //A = R/Iforsome localringRandan idealIofR. then itholdsthatAsh =
Rsh/IR'h;

(vi) if the dimension ofA is equal to d. then the dimension of Ash is equal to d.

where Ash is a strict henselization ofA (see [G3. (18-8). p. 144]/o;- the definition).

Proof. Statements (i) and (iv) follow from [G3. proposition (18-8-8) (i). p. 146]
and [G3. proposition (18-8-8) (iii). p. 147J. Statements (ii) and (iii) follow from [G3.
corollary (18-8-13) (a-c). p. 149]. and (v) follows from [Mil. p. 38. line 27]. Finally.
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since the natural map A -> Ash is fiat by (iv), the going-down theorem holds
between A and Ash by [Mai. (5. D). theorem 4, p. 33]. Therefore assertion (vi)

follows from (i) and Lemma 1.

Lemma4. Let {A,m) be a local ring with the maximal ideal m. Let B be the ring
((AA)sh)\ Then the following assertions hold:

(i) B ina local ring with the maximal idealmB;
(ii) if A is Cohen-Macaulay {respectively regular), then B is Cohen-Macaulay

(respectively regular);
(iii) ifA is a homomorphic image ofa Cohen-JIacaulay local ring and satisfies the

Serre {Sk)-cnndition. then B satisfies the Serre (Sk)-condition for apositive integer
k;

(iv) the natural map A ->B is afaithfullyflat extension;
(v) ifA = R/Ifor some local ring Randan idealI ofR, then it holds that B =

((RA)sh)A/I({RA)sh)A;

(vi) if the dimension ofA is equal to d, then the dimension ofB is equal to d,
where AA is the completion ofA with respect to the maximal ideal, and Ash is a strict

henselization of A.

Proof. We only prove statement (iii). Repeating a similar argument, the other
assertions follow immediately from Lemmas 1-3. and [Mai. (4. B). p. 27].

Let R be a C'ohen-Macaulay local ring which subjectively maps to a local ring A.
We denote the kernel of the surjection by /. Then A is isomorphic to R/I. If A
satisfies the Serre (S^-eondition. then AA.satisfies the Serre (5t)-condition by (iii) of

Lemma 2. since A is a homomorphic image ofa Cohen-Macaulay local ring R. Since
R is a Cohen-Macaulav local ring. RA is also a Cohen-Macaulay local ring by (ii) of
Lemma2. Further AA is isomorphic to {R/I)A = RA/IRA by (v) ofLemma 2. Hence
AA is a homomorphic image of a C'ohen-Macaulay local ring RA.

Since AA satisfies the Serre (S^-condition, (AA)sh satisfies the Serre (Sfc)-condition
by (iii) ofLemma 3. Since RA is a C'ohen-Macaulay localring, (RA)sh is also a Cohen-
Macaulay local ring by (ii) ofLemma 3. Further (AA)sh is isomorphic to ((R/I)A)*h =
(RA)sh/I{RA)sh by (v) of Lemma 3. Hence (AA)S'! is a homomorphic image of a
C'ohen-Macaulay local ring (RA)ah.

Xow since (AA)sh is a homomorphie image ofa Cohen-Macaulay local ring {RA)sh
and (AA)sh satisfies the Serre (S^-condition. B - ({AA)sh)A satisfies the Serre (Sk)-

condition by (iii) of Lemma 2. The proofofassertion (iii) is completed.

Lemma 5. Let (R,m,k) be a regular local ringofdimension n containingafield, and
I an ideal ofR of dimension d > 1. IfR/I satisfies the Serre {S->)-condition, then the

following assertions hold:
(i) inj.clim^ H'Il~~d(R) = d:

(ii) inj.diinflHj(R) < n- l -j ifj> n-d,
where inj.dim^ T is the injective dimension of an R-module T.

Proof. Statement (i) is straightforward from [LI. (4-4iii)J. so we only have to prove
the assertion (ii). We proceed in several steps.

Step 1. First we prove that the "Second Vanishing Theorem' holds for the local
cohomology module Hj(R), that is Hj(R) = 0forj Js dim R- 1 (cf. [Sp. p. 143, line
15]).
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Since.4 = R/I is a homomorphic image of regular local ring R, B = ((J4A)s/i)A =

((i?A)*'')A//((i?A)-sh)A is also a homomorphic image of regular local ring ({RA)sh)^ by

(ii) of Lemma 4. If.4 = R/I satisfies the Serre (5rL>)-condition. then the local ring
B = ((AA)ST = ((i?A)s/')A//((i?A)s'!)A also satisfies the Serre (S2)-condition by (iii)

ofLemma 4, and the dimension ofB and ((i?A)s'')A are equal to d and n respectively

by (vi) of Lemma 4. It follows from [Ha2. corollary 2-4. p. 503| that the punctured

spectrum of Spec (B) is connected, that is Spec A is formally geometrically connected

(see [HuL. theorem 2-9. p. 79] for the definition). Hence since the dimension ofR/I
isgreaterthan one. we have H'/(R) = H"~l(R) =0by [HuL. theorem 2-9. p. 79].

Sfpp 2. Next we shall prove that Hji(R)q = 0 for all prime ideals Q containing /

withdimR/Q^n-I-janddimR/Q<d-1.

Indeed, let QbeanyprimeidealofRcontaining/withdim R/Q ^ n- 1 -j and
dimR/Q<d-1.

(a)IfdimR/Q^n-1-j,thenwehave:

j ^ n-i-dimR/Q
= dimR-1-dimR/Q
= (dimR-dimR/Q)-1
= htQ-1
= dimRq-1,

by [Ma2. section 31, lemma 2. p. 250].
(b) Further since R/I satisfies the Serre (S^-eondition. R/I is equidimensional by

Remark 1. Hence it holds that

dim(i?//)Q = htQ//
= dimi?/J-dim((i?//)/(Q//)),

by [Ma2. section 31. lemma 2, p. 250] again. If dim R/Q < d~ 1. then wehave:

dimRQ/1RQ = dim(R/I)Q
= htQ/I
= dim i?/J-dim((i?//)/(Q//))
= dimR/I-dimR/Q
> d-(d-\)
= 1,

by |Ma2, section 31. lemma 2. p. 2f>0|.

We note that the localization (R/I)q = Rq/IRq satisfies the Serre (S^-condition
and Rq is also a regular local ring.

Now we consider the category of modules over the regular local ring Rq. It then
follows from Step 1 that the Second Vanishing Theorem holds for the local cohomol-
ogymoduleHjBq(Rq).thatis.Hj(R)Q =0forj > dim RQ-landdim Rq/IRq > 1
by (a) and (b). We obtain the assertion of this step.

Step 3. In this step, we shall prove that dim Supp_H"^(i?)g < n - 1 -j under the
assumption thatj > n -d.

Indeed, let Q be in Hup})Hj(R). then we have Hj{R)Q = H'IRr (RQ) * 0. From the
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assumptionj > n - d, we have

dimR/Q ^ n-i-j
< n-I-(n-d)
= d-l.

It follows from Step 2(6) that dim RQ/IRQ > 1. Then it holds that

j ^ dimRq-1
= dimR~dimR/Q-1
= n-\-dimR/Q,

by the local Lichtenbaum-Hartshorne Vanishing Theorem and the Grothendieck
Vanishing Theorem for the local cohomology module HJ(R)q = HJIR {Rq) 4= 0. It
therefore follows from Step 2 that dimR/Q < n - \ -j for all prime ideals Q in
Suppi^(iJ). We then conclude that dim Kuppi//(.R) <?? -j - 1.

#tep 4. Since the inequality inj.dimi//(i?) ^ dim H\ip\)Hj(R) holds by [HuS| and
[LI. corollary 3-6. }). 52], the proofofthe assertion (ii) is completed.

3. Proofofthe main results

Proposition 1. Let R be a regular local ring containing afield of dimension n, I an
ideal ofR of dimension d > 1. IfR/I satisfies the Herre {S->)-contiition, then ice have
Xd,d(R/I) = 1.

Proof. The functor Tj( - ) takes injectives into !", ( - )-acyclic objects in the cate-
gory of -R-modules. So by Grothendieck's spectral sequence, we obtain the following
spectral sequence (cf. [Gl, theorem A, p. 5]):

Ep,'q = H^HfiR) => Hp+q =H^q{R).

The spectral sequence has the differentials as follows:
T ?d-r,n-d-(I-r) r^d,n-d rpd+i,)i~d+(l-r)

£,r > rjr * £jr

We shall prove that all the differentials that come into and go out of Ef.'n~d are 0

forallr^2.
Now it follows from [LI. (4-4i), p. 54] that H^H'/"7(R) = 0 for all i > d and all

p ^ 0. On the other hand, we calculate as follows:

~(-d+{\-r)) = d-\+r

> d-1+2
= d+1

> d,

for r ^ 2. Hence we have ^+r.n-d+(i-r) = Hd+rH»-dMi-r)(R) = () 8o jt h()kls that
Ed+r,n-dm-r) = () fo]. au r"j> 2 Thus it fon,)ws that the differentials Efn~d ->

Ed+r,n-d+(l-r) are () fol. aIj ,. ^ o.

From Lemma 5, we calculate as follows:

inj.dimH^~'^(^r){R) < n-I-(n-d-(1-r))

= d-r.

Hence we have ££-'".«-<M'-'-> = HfH^-d~l'~1)(R) = 0. So it holds that
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Ed-v.n-d-(\-r) =oforallr ^ 2. Thusitfollowsthatthedifferentials^d-^-d-u-r) _^

Ed,n-d are0fm.a]1 r ^ 2.
Furtherwehavei?.?'*7 =0forallp^ 0, q^0withp+g= n,p<dbyLemma5.

Since inj.dim#J(i?) ^"dim SuppifJ(i?) < dim F(/) = d by [HuS] and [LI, corollary

3-6.p.521.^holdsthatEp,q =0forallp^0.q>0withp+q=??.p>d.Itthen
follows that R-terms are all 0 in the total degree n except jE^'á"~.

FiK. 1

We express Ei-terms in the above diagram (Fig. 1). The circles mean the vanishing
ofE-2-terms by Lemma 5. Furthermore all E^-terms are 0 except the black circles.

Therefore the above spectral sequence collapses at -B.,
p insms:

d,n-d
and we have isomor-

HiHrd( R) å t-iiLn -d

r^ fpd.n-d
--^oc
~Hn
= H^R).

SinceRisa regularlocal ring. H^(R) isisomorphicto E(k). where E(k) isthe injeetive
hull of A.'. Since H?nH?~d(R) is isomorphie to E(k). it therefore follows from [LI,

lemma 1-4, p. 44] that Ad.d(A) = 1. The proofofthe proposition is completed.

Proof of Theorem 1. Completing the local ring A with respect to the topology de-
fined by the maximal ideal, there is a surjeetion R -> AA from a regular local ring
R containing a fields to AA by Cohen's structure theorem. We denote its kernel by
/ and the maximal ideal ofR by m. AA = R/I is also Cohen-Macaulay by (i) of
Lemma 3. Especially AA = R/I satisfies the Serre (SL>)-eondition by [Mai, (17. I),

p. 125. lines 8-9]. Therefore the theorem follows from Proposition 1.

Corollary 1. Let A be a local ringcontainingafield of dimension rf > 1, complete
with the topology defined by the maximal ideal. If A xatixfiex the Serre (S^-condition,
then we hare Xd_(i(A) = 1.

Proof. By Cohen s structure theorem, there is a surjeetion from a regular local
ring R to A. Therefore the assertion follows from Proposition 1.
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Remark 2. If the dimension ofa ring A is equal to one, then it always holds that
Ai,i(A) = l.

Example 1. The converse of the theorem, the proposition and the corollary do not
hold in general. The following example is essentially due to Kazufumi Eto. Let R
be the localization ofk[x{,x2.x-^,x+,xr,,x{<,\ by (xux2,x^,x4,xr,,x{;). I - (zi,.rL>,£n) H

(x->,X;i,X4) (~1 (x3,X4,x;-,) Pi (x+,x-t,xr,) D (a>,.x(i,Xj) and P = (xi,.r2,a;s,x3,Xh). Here

we note that / is equidimensional and dim R/I = 3. Then we have dim(i?//)p = 2
and IRp - (xt,x2,x:i)RP 0 (:r5,x(i,X\)Rp. It follows that the punctured spectrum of
Spec(R/I)p is disconnected, that is Spec R/I is not locally connected in cndimension
one (see [Ha2, definition, p. 500J for the definition). It follows from [Ha2, corol-
lary 24, p. 503] that Spec R/I does not satisfy the (S2)-condition and therefore R/I

is not Cohen-Macaulay.
On the other hand. Yanagawa shows that for pure square-free monomial ideals, the

highest Lyubeznik number is one if and only if the coiTesponding ring is connected
in codimension one (cf. [Ya. corollary 3-16]). The local space Spec R/I is connected

in codimension one and / is a pure square-free monomial ideal in R. It follows from
[Ya, corollary 3-16J that X^ :^(R/I) = 1. While he used the combinatorial argument to
prove [Ya. corollary 3-16], one can find the direct proofofthe result that \:ij(R/I) =
1 in [EK], by which we could point out that the earlier version of [Ya, corollary 3-16J

was incorrect.
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