CRREERFRE WoTE w2y (AR P04

17

Entropy of Probability Measures

on Finite Commutative Hypergroups

Yukari FUNAKOSHI and Satoshi KAWAKAMI
(Department of Mathematics, Nara University of Education, Nara 630-8528, Japan)
(Received May 7, 2008)

Abstract

The purpose of this paper is to investigate entropy of probability measures on finite com-

mutative hypergroups. In fact, we give a notion of entropy which is compatible with entropy of

random walks on finite symmetric regular graphs. We study some fundamental propaties of the

entropy concerning with maximality. (AMS Subject Classification : 43A62, 20N20.)
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1. Introduction

Roughly speaking, the hypergroup convolution is a
probabilistic extension of the group convolution. The
concept of convolution of measures on a locally com-
pact group has been generalized beyond the group case
in the axiomatic setting of a hypergroup, due to C.F.
Dunkl, R.I. Jewett, and R. Spector around 1975.

In this paper we establish a notion of entropy of
probability measures on finite commutative hyper-
groups which is compatible with usual entropy of ran-
dom walks on finite symmetric regular graphs.
Wildberger"” studied a certain entropy of probability
measure on finite hypergroups related with informa-
tion theory. Our definition of entropy is different from
his notion of entropy.

Let K = {c,,c,, =** ,c,} be a finite commutative hyper-

group with the #-algebra A(K). We call the invariant

n
measure g =y, = > w(c,)c, on K the canonical Haar
k=0

measure of K.

n
For a probability measure v = > a,c, on K, we define
k=0

a entropy S,(v) of v relative to x by

ay

(i Y n
S,u< y) = — U(loga) = — g} a, logm.

Let v, denote the normalized Haar measure of K which

1

wk)

Then we have the following results.

In Theorem 1 we show 0 < 5,(v) < log w(K) and we

characterize the probability measure v such that the

is given by v, =

entropy S,,( y) attains the maximum value.

In Theorem 2 we show the following. Let H =
(H, A(H)) be a generalized orbital hypergrgroup of K =
(K, A(K)) by the conditional expectation E from A(K)
onto A(H) such that H = E(K). Then s, = E(z,) holds for
the canonical Haar measures p, of K and p, of H. For a
probability measure v on K we have S, (v) < S, (E(v)).
Moreover, the equality S,, (v) = S, (E(v)) holds if and
only if v=E(v) € A(H).

This work has been done by developing some
results in bachelor's thesis? by the first author in 2007.

2. Preliminaries

We recall some notions and facts on finite commu-
tative hypergroups from Bloom-Heyer's Book®” and
Wildberger's report?. K := (K, A) is called a finite com-
mutative hypergroup if the following conditions (1)~
(6) are satisfied.

(1) Ais a %-algebra over C with the unit c,.
(2) K = {c,, ¢, =, ¢, } is a linear basis of A.
3) K'=K.
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n
() cc, = S nkc, where n! is a non-negative real
k=0
number such that
ci=c, = n) >0,

c.#c,=mn’=0.
(5) in; =1 for any 4, 5.
k=0

(6) c,c,=ce, forany i, j.

We often denote A by A(K) for K = (K, A). The
weight of an element ¢, € K is defined by w(c,) := (r% )"
where ¢, = ¢;, and the total weight of K is given by
wK) = 2 wlc).

Let M'(K) denote the set of probability measures

onk,i.e.

M'K) :={v= iakck (4,20 (k=0,1,n), Sa,=1).
k=0

k=0

For v = Jia,c, € AK), support of v is defined by
supp(v):={c,:a,#0, k=0,1, -, m).
Let w(K) denote the normalized Haar measure

of K which is given by

- 55

C

Let A be a =-algebra with the unit ¢, and B be a -
subalgebra of A with the unit ¢,. Then a linear mapping
E from A onto B is called a conditional expectation if
the following conditions are satisfied.

(1) E(cy) = ¢,
(2) E(yxz)= yEw)z forx €A, y, 2 €B.
(3) Elx" x) > 0.

Let H = (H, A(H)) and K = (K, A(K)) be finite hyper-
groups such that the #-algebra A(H) is realized in the -
algebra A(K). We call H a generalized orbital hyper-
group of K if there exists a conditional expectation £
from A(K) onto A(H) such that H = E(K). This notion is a

generalization of a usual orbital hypergroup.
3. Entropy of probability measures

Let K = {c,, ¢, ***, ¢,} be a finite commutative hyper-
group with the x-algebra A(K). We call the invariant

measure y, = > w(c,)c, on K the canonical Haar meas-
k=0
ure of K. This y, is often denoted by p when K is obvi-

n
ous. For a probability measure v = > a,c, on K, we de
k=0

fine a entropy S,(v) of v relative to x by
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a,

w(c,)’

S(v)=-v <10gd—u> - - >a,log
/ du =0

Let vy, denote the normalized Haar measure of K
which is given by y,= ﬁ . Then we have the follow-
ing theorem.

Theorem 1. The entoropy S/I(u) is non-negative
and S,(v) < log w(K). The entropy S,(v) attains the max-

imam value log w(K) if and only if v=y,. Moreover, S, (v)

= 0if and only if a, =1 for some k such that w(c,) = 1.
Proof. By the fact that 0 < %S 1, - aklog%
>0. Then it is clear that S,(v) > 0. Suppose that S,(v) =

0. Then — aklogw(ziék) =0 for all k. This implies that %&)
=0orl. If %: 1 for some k then a, = w(c,). Since 0 <

a, < 1and w(c,) > 1, we obtain a, = 1 and w(c,) = 1. We
note that a, =0 for all j such that j # &. Moreover, apply-

ing Jensen's inequality, it is easy to see that Sﬂ(u) =
w(c,)

o= w(K) for all k, namely a,=

log w(K) if and only if

Z)f(% . This implies that v = y,.

[Q.E.D.]

4. Entropy and generalized orbital
hypergroups

Let H = (H, A(H)) and K = (K, A(K)) be finite commu-
tative hypergroups such that the #-algebra A(H) is real-
ized in the #-algebra A(K). We call H a generalized
orbital hypergroup of K if there exists a conditional
expectation E from A(K) onto A(H) such that H = E(K).
When an action « of a finite group G on a hypergroup K
is given, an orbital hyeprgroup H = K“ is defined by the

conditional expectation £ by

E(x)

- L a(x) forx € A(K).
|G| gEG

We note that many hypergroups are obtained as gener-
alized orbital hypergroups which are not necessarily
usual orbital hypergroups. Refer to our paper(4).
Theorem 2. Let H = (H,A(H)) be a generalized
orbital hypergrgroup of K = (K,A(K)) by a conditional
expectation £ from A(K) onto A(H) such that H = E(K).
Then 1, = E(y,) holds for the canonical Haar measures
m of K and p, of H. For a probability measure v on K
we have S, (v) < 8, (E(v)). Moreover, the equality S,,, (v)

=S, (E(v)) holds if and only if v=E(v) € A(H).
Proof. Let K and H be given by K = {c,,c,,***,c,}
and H = {d,, d,, -**, d,}, where ¢, is the unit of K and d,

is the unit of 4, and ¢, = d,. For each d; € H, set
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K(j)={c€EK:E(c)=d)}

J

, ¢, ()

&

= {Cl(j)7 CZ(j)a o
We note that

K=JK(j) and in,:n

7=0 j=0

Moreover, it is easy to see that each d, € H is written as

n; n;

d;= Salj)clj) where Sa(j)=1.

i=1 i=1

By this fact, we see that d, 4 = p for each d, € H. Hence
d.E(p,) = E(d, t,) = E(p4). This implies that the measure
E(u,) is H-invariant so that £(z,) is a Haar measure of H.
Therefore E(y,) is written by E(z,) = ¢y, for some con-

stant ¢ > 0. Since s, and g, is represented as

n m

te= Swle)e, py = ]E;, w(d,)d,

k=0

and E(c,) = d,, we see that the constant ¢ must be 1 so
that 4, = E(z) holds. The canonical Haar measure g of
K is given by

mo

EEwcmcm

=0 i=1
where

K(j) = le5), eg), = c,,) and K = UK()

j=0

Since E(c(j)) =
Ew)= 3 [ Swie))d
J= i=
By the fact that p, = E(u), we see that

w(d) = S w(e ()

i=1
mo Mg

For a probability measure v = > a,c, = ZO > aljed)
k=0 J=0 =1
of K, E(v) is given by
E(v) = 2 ( Za(j )d Eb/d”

nj

where b, =>, a,(j). Then we get the following equalities.
i=1

LY aly)
Sl ) = jZOEl w(a(]‘))’

m

S, (E(v)) = 2 b, log

(d)

We may assume that a,() > 0. Hence we see that

) g 0 _ % 0l wle L)
-3 o =3 b, 870 ())

% ay) we))) S wlclg) _ b,
Slogg b, al) logg b, " —log (@)’

by Jensens' inequality. Hence we see that
aly) < b.
=S - b, log ——~.
w(c 7)) w(d,)

Therefore we obtain that S,, (v) < S, (E(v)). Moreover,
it is also obtained that the equality holds if and only if

wjf%_ wid) for all 4 =1, 2,

- 21 aj)log

, ;. This implies that

Za(j)c (j) = bd, namely, v =E(v) € A(H).
[Q.E.D.]

Remark. When H is an orbital hypergroup of K
by an action « of a group G on K, the condition v = E(v)
€ A(H) is equivalent to say that v is «-invariant.

Therefore we note that the equality S, (v) = S, (E(v))
holds if and only if v is a-invariant.

Example. Let K = {c,, ¢,, ¢,} be the cyclic group Z,
of order three such that ¢? = ¢,, ¢? = ¢,, ¢, = ¢,, and ¢, =
c,. Let H = {d,, d,} be the hypergroup of order two aris-
ing from random Walk on edges of a regular triangle
where d? = 1al + d,, d; = d,, and w(d,) = 2. Then we
note that the hypergroup H is realized in A(K) by the
relation d, = c,and d, = 50 + cz. We can interpret that
this hypergroup H is an orbltal hypergroup by an action
a of the group G = {e, g} (g% = e) of order two on K such
that «,(c,) = ¢, and g,(c,) = ¢,. We can also interpret that
this hypergroup H is a generalized orbital hypergroup
by the conditional expectation £ from A(K) onto A(H)
such that E(c,) = d, and E(c,) = E(c,) = %cl + %cz =d, In
this case the Haar measures pu, of K and g, of H are

given by
Ui =Cy+ CL+ Cy,
sy =do+2d,.
We note that

E(u) = Elc,) + E(c,) + E(c,)

=d,+d, +d,
=d, + 2d,
= u,
For v =a,c,+a,.c,+a,.c, € M(K), E(v)=a,d,+ (a,+ a,)d,,
we have
S, (v)=—aloga, — a,loga, — a,log a,

a,+a

S, (E(v) = —a,log a, - (a, +a,) log
Theorem asserts that the equality S, (v) = S, (E(v))

holds if and only if a, = a, which is equivalent to say

that v is an «-invariant measure.
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