Entropy of Probability Measures on Finite Commutative Hypergroups

Yukari FUNAKOSHI and Satoshi KAWAKAMI

(Department of Mathematics, Nara University of Education, Nara 630-8528, Japan) (Received May 7, 2008)

Abstract

The purpose of this paper is to investigate entropy of probability measures on finite commutative hypergroups. In fact, we give a notion of entropy which is compatible with entropy of random walks on finite symmetric regular graphs. We study some fundamental propaties of the entropy concerning with maximality. (AMS Subject Classification : 43A62, 20N20.)

Key Words : hypergroup, entropy, random walk

1. Introduction

Roughly speaking, the hypergroup convolution is a probabilistic extension of the group convolution. The concept of convolution of measures on a locally compact group has been generalized beyond the group case in the axiomatic setting of a hypergroup, due to C.F. Dunkl, R.I. Jewett, and R. Spector around 1975.

In this paper we establish a notion of entropy of probability measures on finite commutative hypergroups which is compatible with usual entropy of random walks on finite symmetric regular graphs. Wildberger⁽¹⁰⁾ studied a certain entropy of probability measure on finite hypergroups related with information theory. Our definition of entropy is different from his notion of entropy.

Let $K = \{c_0, c_1, \dots, c_n\}$ be a finite commutative hypergroup with the *-algebra A(K). We call the invariant measure $\mu = \mu_K = \sum_{k=0}^n w(c_k)c_k$ on K the *canonical* Haar measure of K.

For a probability measure $\nu = \sum_{k=0}^{n} a_k c_k$ on K, we define a entropy $S_{\mu}(\nu)$ of ν relative to μ by

$$S_{\mu}(\nu) = -\nu \left(\log \frac{d\nu}{d\mu} \right) = -\sum_{k=0}^{n} a_{k} \log \frac{a_{k}}{w(c_{k})}$$

Let ν_0 denote the normalized Haar measure of *K* which

is given by $\nu_0 = \frac{1}{w(K)} \mu$.

Then we have the following results.

In Theorem 1 we show $0 \leq S_{\mu}(\nu) \leq \log w(K)$ and we characterize the probability measure ν such that the entropy $S_{\mu}(\nu)$ attains the maximum value.

In Theorem 2 we show the following. Let H = (H, A(H)) be a generalized orbital hypergrgroup of K = (K, A(K)) by the conditional expectation E from A(K) onto A(H) such that H = E(K). Then $\mu_H = E(\mu_K)$ holds for the canonical Haar measures μ_K of K and μ_H of H. For a probability measure ν on K we have $S_{\mu_K}(\nu) \leq S_{\mu_H}(E(\nu))$. Moreover, the equality $S_{\mu_K}(\nu) = S_{\mu_H}(E(\nu))$ holds if and only if $\nu = E(\nu) \in A(H)$.

This work has been done by developing some results in bachelor's thesis⁽²⁾ by the first author in 2007.

2. Preliminaries

We recall some notions and facts on finite commutative hypergroups from Bloom-Heyer's $Book^{(1)}$ and Wildberger's report⁽⁹⁾. K := (K, A) is called a *finite commutative hypergroup* if the following conditions $(1) \sim$ (6) are satisfied.

(1) A is a *-algebra over \mathbb{C} with the unit c_0 .

- (2) $K = \{c_0, c_1, \dots, c_n\}$ is a linear basis of A.
- (3) $K^* = K$.

(4) $c_i c_j = \sum_{k=0}^n n_{ij}^k c_k$, where n_{ij}^k is a non-negative real number such that

$$c_i^* = c_j \iff n_{ij}^0 > 0,$$

$$c_i^* \neq c_j \iff n_{ij}^0 = 0.$$

(5)
$$\sum_{k=0}^n n_{ij}^k = 1 \text{ for any } i, j.$$

(6) $c_i c_j = c_j c_i$ for any i, j.

We often denote A by A(K) for K = (K, A). The weight of an element $c_i \in K$ is defined by $w(c_i) := (n_{ij}^0)^{-1}$ where $c_j = c_i^*$, and the *total weight* of K is given by $w(K) := \sum_{i=0}^n w(c_i)$.

Let $M^{1}(K)$ denote the set of probability measures on K, i.e.

$$M^{1}(K) := \{ \nu = \sum_{k=0}^{n} a_{k}c_{k} : a_{k} \ge 0 \ (k = 0, 1, \dots, n), \sum_{k=0}^{n} a_{k} = 1 \}.$$

For $\nu = \sum_{k=0}^{n} a_k c_k \in A(K)$, support of ν is defined by

$$supp(\nu) := \{c_k : a_k \neq 0, k = 0, 1, \dots, n\}$$

Let $\omega(K)$ denote the *normalized Haar measure* of *K* which is given by

$$\omega(K) = \sum_{k=0}^{n} \frac{w(c_k)}{w(K)} c_k.$$

Let *A* be a *-algebra with the unit c_0 and *B* be a *subalgebra of *A* with the unit c_0 . Then a linear mapping *E* from *A* onto *B* is called a conditional expectation if the following conditions are satisfied.

(1)
$$E(c_0) = c_0$$
.

(2)
$$E(yxz) = yE(x)z$$
 for $x \in A$, $y, z \in B$.

$$(3) E(x^* x) \ge 0.$$

Let H = (H, A(H)) and K = (K, A(K)) be finite hypergroups such that the *-algebra A(H) is realized in the *algebra A(K). We call H a *generalized orbital hypergroup* of K if there exists a conditional expectation Efrom A(K) onto A(H) such that H = E(K). This notion is a generalization of a usual orbital hypergroup.

3. Entropy of probability measures

Let $K = \{c_0, c_1, \dots, c_n\}$ be a finite commutative hypergroup with the *-algebra A(K). We call the invariant measure $\mu_K = \sum_{k=0}^n w(c_k)c_k$ on K the *canonical* Haar measure of K. This μ_K is often denoted by μ when K is obvious. For a probability measure $\nu = \sum_{k=0}^n a_k c_k$ on K, we de fine a entropy $S_{\mu}(\nu)$ of ν relative to μ by

$$S_{\mu}(\nu) = -\nu \left(\log \frac{d\nu}{d\mu} \right) = -\sum_{k=0}^{n} a_k \log \frac{a_k}{w(c_k)}$$

Let ν_0 denote the normalized Haar measure of K which is given by $\nu_0 = \frac{1}{w(K)} \mu$. Then we have the following theorem.

Theorem 1. The entoropy $S_{\mu}(\nu)$ is non-negative and $S_{\mu}(\nu) \leq \log w(K)$. The entropy $S_{\mu}(\nu)$ attains the maximam value log w(K) if and only if $\nu = \nu_0$. Moreover, $S_{\mu}(\nu)$ = 0 if and only if $a_k = 1$ for some k such that $w(c_k) = 1$.

Proof. By the fact that $0 \leq \frac{a_k}{w(c_k)} \leq 1$, $-a_k \log \frac{a_k}{w(c_k)} \geq 0$. Then it is clear that $S_{\mu}(\nu) \geq 0$. Suppose that $S_{\mu}(\nu) = 0$. Then $-a_k \log \frac{a_k}{w(c_k)} = 0$ for all k. This implies that $\frac{a_k}{w(c_k)} = 0$ or 1. If $\frac{a_k}{w(c_k)} = 1$ for some k then $a_k = w(c_k)$. Since $0 \leq a_k \leq 1$ and $w(c_k) \geq 1$, we obtain $a_k = 1$ and $w(c_k) = 1$. We note that $a_j = 0$ for all j such that $j \neq k$. Moreover, applying Jensen's inequality, it is easy to see that $S_{\mu}(\nu) = \log w(K)$ if and only if $\frac{w(c_k)}{a_k} = w(K)$ for all k, namely $a_k = \frac{w(c_k)}{w(K)}$. This implies that $\nu = \nu_0$.

[Q.E.D.]

4. Entropy and generalized orbital hypergroups

Let H = (H, A(H)) and K = (K, A(K)) be finite commutative hypergroups such that the *-algebra A(H) is realized in the *-algebra A(K). We call H a generalized orbital hypergroup of K if there exists a conditional expectation E from A(K) onto A(H) such that H = E(K). When an action α of a finite group G on a hypergroup Kis given, an orbital hypergroup $H = K^{\alpha}$ is defined by the conditional expectation E by

$$E(x) = \frac{1}{|G|} \sum_{g \in G} \alpha_g(x) \text{ for } x \in A(K).$$

We note that many hypergroups are obtained as generalized orbital hypergroups which are not necessarily usual orbital hypergroups. Refer to our paper(4).

Theorem 2. Let H = (H, A(H)) be a generalized orbital hypergrgroup of K = (K, A(K)) by a conditional expectation E from A(K) onto A(H) such that H = E(K). Then $\mu_H = E(\mu_K)$ holds for the canonical Haar measures μ_K of K and μ_H of H. For a probability measure ν on Kwe have $S_{\mu_K}(\nu) \leq S_{\mu_H}(E(\nu))$. Moreover, the equality $S_{\mu_K}(\nu)$ $= S_{\mu_H}(E(\nu))$ holds if and only if $\nu = E(\nu) \in A(H)$.

Proof. Let *K* and *H* be given by $K = \{c_0, c_1, \dots, c_n\}$ and $H = \{d_0, d_1, \dots, d_m\}$, where c_0 is the unit of *K* and d_0 is the unit of *H*, and $c_0 = d_0$. For each $d_j \in H$, set Entropy of Probability Measures on Finite Commutative Hypergroups

$$\begin{split} &K(j) = \{ c \in K : E(c) = d_j \} \\ &= \{ c_1(j), \, c_2(j), \, \cdots, \, c_{n_j}(j) \} \end{split}$$

We note that

$$K = \bigcup_{j=0}^{m} K(j)$$
 and $\sum_{j=0}^{m} n_j = n$

Moreover, it is easy to see that each $d_i \in H$ is written as

$$d_j = \sum_{i=1}^{n_j} a_i(j)c_i(j)$$
 where $\sum_{i=1}^{n_j} a_i(j) = 1$.

By this fact, we see that $d_{j}\mu_{k} = \mu_{k}$ for each $d_{j} \in H$. Hence $d_{j}E(\mu_{k}) = E(d_{j}\mu_{k}) = E(\mu_{k})$. This implies that the measure $E(\mu_{k})$ is *H*-invariant so that $E(\mu_{k})$ is a Haar measure of *H*. Therefore $E(\mu_{k})$ is written by $E(\mu_{k}) = c\mu_{H}$ for some constant c > 0. Since μ_{k} and μ_{H} is represented as

$$\mu_{K} = \sum_{k=0}^{n} w(c_{k})c_{k}, \ \mu_{H} = \sum_{j=0}^{m} w(d_{j})d_{j}$$

and $E(c_0) = d_0$, we see that the constant *c* must be 1 so that $\mu_{\rm H} = E(\mu_{\rm K})$ holds. The canonical Haar measure $\mu_{\rm K}$ of *K* is given by

$$\mu_{\mathbf{K}} = \sum_{j=0}^{m} \sum_{i=1}^{n_j} w(c_i(j))c_i(j),$$

where

$$K(j) = \{c_1(j), c_2(j), \dots, c_{n_j(j)}\}$$
 and $K = \bigcup_{i=0}^m K(j)$.

Since $E(c_i(j)) = d_i$,

$$E(\mu_{\kappa}) = \sum_{j=0}^{m} \left(\sum_{i=1}^{n_{j}} w(c_{i}(j)) \right) d_{j}.$$

By the fact that $\mu_{H} = E(\mu_{K})$, we see that

$$w(d_j) = \sum_{i=1}^{n_j} w(c_i(j)).$$

For a probability measure $\nu = \sum_{k=0}^n a_k c_k = \sum_{j=0}^m \sum_{i=1}^{n_j} a_i(j) c_i(j)$ of $K, E(\nu)$ is given by

$$E(\nu) = \sum_{j=0}^m \left(\sum_{i=1}^{n_j} a_i(j)\right) d_j = \sum_{j=0}^m b_j d_j,$$

where $b_j = \sum_{i=1}^{n_j} a_i(j)$. Then we get the following equalities.

$$\begin{split} S_{\mu_{\kappa}}(\nu) &= -\sum_{j=0}^{m} \sum_{i=1}^{n_{j}} a_{i}(j) \log \frac{a_{i}(j)}{w(c_{i}(j))},\\ S_{\mu_{H}}(E(\nu)) &= -\sum_{j=0}^{m} b_{j} \log \frac{b_{j}}{w(d_{j})}. \end{split}$$

We may assume that $a_i(j) > 0$. Hence we see that

$$-\sum_{i=1}^{n_j} \frac{a_i(j)}{b_j} \log \frac{a_i(j)}{w(c_i(j))} = \sum_{i=1}^{n_j} \frac{a_i(j)}{b_j} \log \frac{w(c_i(j))}{a_i(j)}$$

$$\leq \log \sum_{i=1}^{n_j} \frac{a_i(j)}{b_j} \frac{w(c_i(j))}{a_i(j)} = \log \sum_{i=1}^{n_j} \frac{w(c_i(j))}{b_j} = -\log \frac{b_j}{w(d_j)},$$

by Jensens' inequality. Hence we see that

$$\sum_{i=1}^{n_j} a_i(j) \log \frac{a_i(j)}{w(c_i(j))} \leq -b_j \log \frac{b_j}{w(d_j)}.$$

Therefore we obtain that $S_{\mu_{k}}(\nu) \leq S_{\mu_{H}}(E(\nu))$. Moreover, it is also obtained that the equality holds if and only if $\frac{w(c_{i}(j))}{a_{i}(j)} = \frac{w(d_{j})}{b_{j}}$ for all $i = 1, 2, \cdots, n_{j}$. This implies that $\sum_{i=1}^{n_{j}} a_{i}(j)c_{i}(j) = b_{j}d_{j}$, namely, $\nu = E(\nu) \in A(H)$. [Q.E.D.]

Remark. When *H* is an orbital hypergroup of *K* by an action α of a group *G* on *K*, the condition $\nu = E(\nu) \in A(H)$ is equivalent to say that ν is α -invariant.

Therefore we note that the equality $S_{\mu_{\kappa}}(\nu) = S_{\mu_{\mu}}E(\nu)$ holds if and only if ν is α -invariant.

Example. Let $K = \{c_0, c_1, c_2\}$ be the cyclic group \mathbb{Z}_3 of order three such that $c_1^3 = c_0, c_1^2 = c_2, c_1^* = c_2$, and $c_2^* = c_1$. Let $H = \{d_0, d_1\}$ be the hypergroup of order two arising from random walk on edges of a regular triangle where $d_1^2 = \frac{1}{2}d_0 + \frac{1}{2}d_1, d_1^* = d_1$, and $w(d_1) = 2$. Then we note that the hypergroup H is realized in A(K) by the relation $d_0 = c_0$ and $d_1 = \frac{1}{2}c_1 + \frac{1}{2}c_2$. We can interpret that this hypergroup H is an orbital hypergroup by an action α of the group $G = \{e, g\} (g^2 = e)$ of order two on K such that $a_g(c_1) = c_2$ and $a_g(c_2) = c_1$. We can also interpret that this hypergroup H is a generalized orbital hypergroup by the conditional expectation E from A(K) onto A(H)such that $E(c_0) = d_0$ and $E(c_1) = E(c_2) = \frac{1}{2}c_1 + \frac{1}{2}c_2 = d_1$. In this case the Haar measures μ_K of K and μ_H of H are given by

$$\mu_{K} = c_{0} + c_{1} + c_{2},$$
$$\mu_{H} = d_{0} + 2d_{1}.$$

We note that

$$E(\mu_{\kappa}) = E(c_0) + E(c_1) + E(c_2)$$

= d_0 + d_1 + d_1
= d_0 + 2d_1
= \mu_{m}

For $\nu = a_0c_0 + a_1c_1 + a_2c_2 \in M^1(K), E(\nu) = a_0d_0 + (a_1 + a_2)d_1$, we have

$$S_{\mu_{k}}(\nu) = -a_{0}\log a_{0} - a_{1}\log a_{1} - a_{2}\log a_{2},$$

$$S_{\mu_{k}}(E(\nu)) = -a_{0}\log a_{0} - (a_{1} + a_{2})\log \frac{a_{1} + a_{2}}{2}.$$

Theorem asserts that the equality $S_{\mu_{\kappa}}(\nu) = S_{\mu_{\mu}}E(\nu)$ holds if and only if $a_1 = a_2$ which is equivalent to say that ν is an α -invariant measure.

References

- Bloom, W.R. and Heyer, H. : Harmonic Analysis of Probability Measures on Hypergroups, 1995, Walter de Gruyter, de Gruyter Studies in Mathematics 20.
- (2) Funakoshi, Y. : Entropy of probability measures on finite commutative hypergroups, Bachelor's thesis(Japanese), 2007.
- (3) Funakoshi, Y. and Kawakami, S. : Entropy of probability measures on compact commutative hypergroups, in preparation.
- (4) Heyer, H., Jimbo, T., Kawakami, S., and Kawasaki, K. : Finite commutative hypergroups associated with actions of finite abelian groups, Bull. Nara Univ. Educ., Vol. 54 (2005), No.2., pp.23-29.
- (5) Heyer, H., Katayama, Y., Kawakami, S., and Kawasaki, K. :

Extensions of finite commutative hypergroups, Scientiae Mathematicae Japonicae, 65, No. 3 (2007), pp.373-385.

- (6) Kawakami, S. : Extensions of commutative hypergroups, to appear in Infinite Dimesional Harmonic Analysis IV, World Scientific, 2008.
- (7) Kawakami, S. and Nakano, F. : Entropy of states on finite commutative hypergroups, in preparation.
- (8) Kawakami, S. and Tai, M. : Entropy of probability measures on motion hypergroups, in preparation.
- (9) Wildberger, N.J. : Finite commutative hypergroups and applications from group theory to conformal field theory, Applications of Hypergroups and Related Measure Algebras, Amer. Math. Soc., Providence, 1994, pp.413-434.
- (10) Wildberger, N.J. : Duality and entropy for finite abelian hypergroups, preprint, Univ. of NSW (1989).