Entropy of Probability Measures on Finite Commutative Hypergroups

Yukari FUNAKOSHI and Satoshi KAWAKAMI

(*Department of Mathematics, Nara University of Education, Nara* 630*-*8528*, Japan*) (Received May 7, 2008)

Abstract

The purpose of this paper is to investigate entropy of probability measures on finite commutative hypergroups. In fact, we give a notion of entropy which is compatible with entropy of random walks on finite symmetric regular graphs. We study some fundamental propaties of the entropy concerning with maximality. (AMS Subject Classification : 43A62, 20N20.)

Key Words : hypergroup, entropy, random walk

1. Introduction

Roughly speaking, the hypergroup convolution is a probabilistic extension of the group convolution. The concept of convolution of measures on a locally compact group has been generalized beyond the group case in the axiomatic setting of a hypergroup, due to C.F. Dunkl, R.I. Jewett, and R. Spector around 1975.

In this paper we establish a notion of entropy of probability measures on finite commutative hypergroups which is compatible with usual entropy of random walks on finite symmetric regular graphs. Wildberger⁽¹⁰⁾ studied a certain entropy of probability measure on finite hypergroups related with information theory. Our definition of entropy is different from his notion of entropy.

Let $K = \{c_0, c_1, \dots, c_n\}$ be a finite commutative hypergroup with the $*$ -algebra $A(K)$. We call the invariant measure $\mu = \mu_k = \sum_{k=0}^{n} w(c_k) c_k$ on *K* the *canonical* Haar measure of *K*.

For a probability measure $\nu = \sum_{k=0}^{n} a_k c_k$ on *K*, we define a entropy $S_\mu(\nu)$ of ν relative to μ by

$$
S_{\mu}(\nu) = -\nu \left(\log \frac{d\nu}{d\mu} \right) = -\sum_{k=0}^{n} a_k \log \frac{a_k}{w(c_k)}.
$$

Let v_0 denote the normalized Haar measure of *K* which

is given by
$$
\nu_0 = \frac{1}{w(K)} \mu
$$
.

Then we have the following results.

In Theorem 1 we show $0 \leq S_u(\nu) \leq \log w(K)$ and we characterize the probability measure ν such that the entropy $S_{\mu}(\nu)$ attains the maximum value.

In Theorem 2 we show the following. Let $H =$ $(H, A(H))$ be a generalized orbital hypergrap of $K =$ $(K, A(K))$ by the conditional expectation *E* from $A(K)$ onto $A(H)$ such that $H = E(K)$. Then $\mu_H = E(\mu_K)$ holds for the canonical Haar measures μ_k of *K* and μ_H of *H*. For a probability measure ν on *K* we have $S_{\mu_K}(\nu) \leq S_{\mu_H}(E(\nu))$. Moreover, the equality $S_{\mu_K}(\nu) = S_{\mu_H}(E(\nu))$ holds if and only if $\nu = E(\nu) \in A(H)$.

This work has been done by developing some results in bachelor's thesis⁽²⁾ by the first author in 2007.

2. Preliminaries

We recall some notions and facts on finite commutative hypergroups from Bloom-Heyer's Book⁽¹⁾ and Wildberger's report⁽⁹⁾. $K := (K, A)$ is called a *finite commutative hypergroup* if the following conditions (1) ~ (6) are satisfied.

(1) *A* is a $*$ -algebra over $\mathbb C$ with the unit c_0 .

(2) $K = \{c_0, c_1, \dots, c_n\}$ is a linear basis of *A*. (3) $K^* = K$.

(4) $c_i c_j = \sum_{k=0}^n n_{ij}^k c_k$, where n_{ij}^k is a non-negative real number such that

$$
c_i^* = c_j \Longleftrightarrow n_{ij}^0 > 0,
$$

\n
$$
c_i^* \neq c_j \Longleftrightarrow n_{ij}^0 = 0.
$$

\n(5)
$$
\sum_{k=0}^n n_{ij}^k = 1 \text{ for any } i, j.
$$

(6)
$$
c_i c_j = c_j c_i
$$
 for any i, j .

We often denote *A* by $A(K)$ for $K = (K, A)$. The $weight$ of an element $c_i \in K$ is defined by $w(c_i) := (n_{ij}^0)^{-1}$ where $c_j = c_i^*$, and the *total weight* of *K* is given by $w(K) := \sum_{i=0}^{n} w(c_i).$

Let $M^1(K)$ denote the set of probability measures on *K*, i.e.

$$
M^{1}(K) := \{ \nu = \sum_{k=0}^{n} a_{k} c_{k} : a_{k} \ge 0 \ (k = 0, 1, \cdots, n), \sum_{k=0}^{n} a_{k} = 1 \}.
$$

For $\nu = \sum_{k=0}^{n} a_k c_k \in A(K)$, *support* of ν is defined by

$$
supp(\nu) := \{c_k : a_k \neq 0, \ k = 0, 1, \cdots, n\}.
$$

Let ω(*K*) denote the *normalized Haar measure* of *K* which is given by

$$
\omega(K) = \sum_{k=0}^n \frac{w(c_k)}{w(K)} c_k.
$$

Let *A* be a $*$ -algebra with the unit c_0 and *B* be a $*$ subalgebra of A with the unit c_0 . Then a linear mapping *E* from *A* onto *B* is called a conditional expectation if the following conditions are satisfied.

(1)
$$
E(c_0) = c_0
$$
.

(2)
$$
E(yxz) = yE(x)z
$$
 for $x \in A$, $y, z \in B$.

(3)
$$
E(x^*x) \ge 0
$$
.

Let $H = (H, A(H))$ and $K = (K, A(K))$ be finite hypergroups such that the $*$ -algebra $A(H)$ is realized in the $*$ algebra *A*(*K*). We call *H* a *generalized orbital hypergroup* of *K* if there exists a conditional expectation *E* from $A(K)$ onto $A(H)$ such that $H = E(K)$. This notion is a generalization of a usual orbital hypergroup.

3. Entropy of probability measures

Let $K = \{c_0, c_1, \dots, c_n\}$ be a finite commutative hypergroup with the $*$ -algebra $A(K)$. We call the invariant measure $\mu_{\scriptscriptstyle{K}} = \sum\limits_{k=0}^n w(c_k)c_k$ on K the *canonical* Haar measure of *K*. This μ_K is often denoted by μ when *K* is obvious. For a probability measure $\nu = \sum_{k=0}^{n} a_k c_k$ on *K*, we de fine a entropy $S_{\mu}(\nu)$ of ν relative to μ by

$$
S_{\mu}(\nu) = -\nu \left(\log \frac{d\nu}{d\mu} \right) = -\sum_{k=0}^{n} a_k \log \frac{a_k}{w(c_k)}.
$$

Let ν_0 denote the normalized Haar measure of K which is given by $v_0 = \frac{1}{m(K)} \mu$. Then we have the following theorem. *w*(*K*)

Theorem 1. The entoropy $S_n(\nu)$ is non-negative and $S_n(v) \leq \log w(K)$. The entropy $S_n(v)$ attains the maximam value log $w(K)$ if and only if $v = v_0$. Moreover, $S_n(v)$ $= 0$ if and only if $a_k = 1$ for some k such that $w(c_k) = 1.$

Proof. By the fact that $0 \leq \frac{a_k}{w(c_k)} \leq 1$, $-a_k \log \frac{a_k}{w(c_k)}$ \geq 0. Then it is clear that $S_{\mu}(\nu) \geq 0$. Suppose that $S_{\mu}(\nu) =$ 0. Then $-a_k \log \frac{a_k}{w(c_k)} = 0$ for all *k*. This implies that $\frac{a_k}{w(c_k)}$ $= 0$ or 1. If $\frac{a_k}{w(c_k)} = 1$ for some *k* then $a_k = w(c_k)$. Since 0 $a_k \leq 1$ and $w(c_k) \geq 1$, we obtain $a_k = 1$ and $w(c_k) = 1$. We note that $a_i = 0$ for all *j* such that $j \neq k$. Moreover, applying Jensen's inequality, it is easy to see that $S_n(v)$ = $\log w(K)$ if and only if $\frac{w(c_k)}{a_k} = w(K)$ for all *k*, namely $a_k =$ $\frac{w(c_k)}{w(K)}$. This implies that $\nu = \nu_0$. *w*(*K*) *ak* $w(c_{\scriptscriptstyle k})$ $w(c_{\scriptscriptstyle k}^{})$ a_{k} $w(c_{\scriptscriptstyle k}^{})$ $w(c_{\scriptscriptstyle k}^{})$ *a*k $w(c_{\scriptscriptstyle k}^{})$

[Q.E.D.]

4. Entropy and generalized orbital hypergroups

Let $H = (H, A(H))$ and $K = (K, A(K))$ be finite commutative hypergroups such that the \ast -algebra $A(H)$ is realized in the $*$ -algebra $A(K)$. We call *H* a generalized orbital hypergroup of *K* if there exists a conditional expectation *E* from $A(K)$ onto $A(H)$ such that $H = E(K)$. When an action α of a finite group *G* on a hypergroup *K* is given, an orbital hyeprgroup $H = K^{\alpha}$ is defined by the conditional expectation *E* by

$$
E(x) = \frac{1}{|G|} \sum_{g \in G} \alpha_g(x) \text{ for } x \in A(K).
$$

We note that many hypergroups are obtained as generalized orbital hypergroups which are not necessarily usual orbital hypergroups. Refer to our paper(4).

Theorem 2. Let $H = (H, A(H))$ be a generalized orbital hypergrap of $K = (K, A(K))$ by a conditional expectation *E* from $A(K)$ onto $A(H)$ such that $H = E(K)$. Then $\mu_H = E(\mu_K)$ holds for the canonical Haar measures μ_K of *K* and μ_H of *H*. For a probability measure ν on *K* we have $S_{\mu_k}(\nu) \leq S_{\mu_k}(E(\nu))$. Moreover, the equality $S_{\mu_k}(\nu)$ $= S_{\mu\nu}(E(\nu))$ holds if and only if $\nu = E(\nu) \in A(H)$.

Proof. Let *K* and *H* be given by $K = \{c_0, c_1, \dots, c_n\}$ and $H = \{d_0, d_1, \cdots, d_m\}$, where c_0 is the unit of K and d_0 is the unit of *H*, and $c_0 = d_0$. For each $d_i \in H$, set

$$
K(j) = \{c \in K : E(c) = d_j\}
$$

= $\{c_1(j), c_2(j), \cdots, c_{n_j}(j)\}$

We note that

$$
K = \bigcup_{j=0}^{m} K(j) \text{ and } \sum_{j=0}^{m} n_j = n
$$

Moreover, it is easy to see that each $d_i \in H$ is written as

$$
d_j = \sum_{i=1}^{n_j} a_i(j)c_i(j)
$$
 where $\sum_{i=1}^{n_j} a_i(j) = 1$.

By this fact, we see that $d_j \mu_k = \mu_k$ for each $d_j \in H$. Hence $d_j E(\mu_k) = E(d_j \mu_k) = E(\mu_k)$. This implies that the measure $E(\mu_k)$ is *H*-invariant so that $E(\mu_k)$ is a Haar measure of *H*. Therefore $E(\mu_k)$ is written by $E(\mu_k) = c\mu_H$ for some constant $c > 0$. Since μ_K and μ_H is represented as

$$
\mu_K = \sum_{k=0}^n w(c_k)c_k, \ \mu_H = \sum_{j=0}^m w(d_j)d_j,
$$

and $E(c_0) = d_0$, we see that the constant *c* must be 1 so that $\mu_H = E(\mu_K)$ holds. The canonical Haar measure μ_K of *K* is given by

$$
\mu_{\!\scriptscriptstyle{K}} = \sum_{\scriptscriptstyle{j=0}}^m \sum_{\scriptscriptstyle{i=1}}^{n_j} w(c_{\scriptscriptstyle{i}}(j)) c_{\scriptscriptstyle{i}}(j),
$$

where

$$
K(j) = \{c_1(j), c_2(j), \cdots, c_{n_j(j)}\} \text{ and } K = \bigcup_{j=0}^m K(j).
$$

Since $E(c_i(j)) = d_j$

$$
E(\mu_K) = \sum_{j=0}^m \left(\sum_{i=1}^{n_j} w(c_i(j)) \right) d_j.
$$

By the fact that $\mu_H = E(\mu_K)$, we see that

$$
w(d_j) = \sum_{i=1}^{n_j} w(c_i(j)).
$$

For a probability measure $v = \sum_{k=0}^{n} a_k c_k = \sum_{j=0}^{m} \sum_{i=1}^{n_j} a_i(j) c_i(j)$ of K , $E(\nu)$ is given by

$$
E(\nu) = \sum_{j=0}^{m} \left(\sum_{i=1}^{n_j} a_i(j) \right) d_j = \sum_{j=0}^{m} b_j d_j,
$$

where $b_j = \sum_{i=1}^{n_j} a_i(j)$. Then we get the following equalities.

$$
S_{\mu_{K}}(\nu) = -\sum_{j=0}^{m} \sum_{i=1}^{n_{j}} a_{i}(j) \log \frac{a_{i}(j)}{w(c_{i}(j))},
$$

$$
S_{\mu_{H}}(E(\nu)) = -\sum_{j=0}^{m} b_{j} \log \frac{b_{j}}{w(d_{j})}.
$$

We may assume that $a_i(i) > 0$. Hence we see that

$$
-\sum_{i=1}^{n_j}\frac{\alpha_i(j)}{b_j}\text{log}\frac{\alpha_i(j)}{w(c_i(j))}=\sum_{i=1}^{n_j}\frac{\alpha_i(j)}{b_j}\text{log}\frac{w(c_i(j))}{\alpha_i(j)}
$$

$$
\leq \log \sum_{i=1}^{n_j} \frac{\alpha_i(j)}{b_j} \frac{w(c_i(j))}{\alpha_i(j)} = \log \sum_{i=1}^{n_j} \frac{w(c_i(j))}{b_j} = -\log \frac{b_j}{w(d_j)},
$$

by Jensens' inequality. Hence we see that

$$
-\sum_{i=1}^{n_j} a_i(j)\log \frac{a_i(j)}{w(c_i(j))} \leq -b_j \log \frac{b_j}{w(d_j)}.
$$

Therefore we obtain that $S_{\mu\nu}(\nu) \leq S_{\mu\nu}(E(\nu))$. Moreover, it is also obtained that the equality holds if and only if $=\frac{w(d_j)}{b}$ for all $i=1, 2, \cdots, n_j$. This implies that $\sum_{i=1}^{n_j} a_i(j)c_i(j) = b_j d_j$, namely, $v = E(v) \in A(H)$. [Q.E.D.] *bj* $w(c_i(j))$ $a_i(j)$

Remark. When *H* is an orbital hypergroup of *K* by an action α of a group *G* on *K*, the condition $\nu = E(\nu)$ \in *A*(*H*) is equivalent to say that ν is α -invariant.

Therefore we note that the equality $S_{\mu\nu}(\nu) = S_{\mu\nu}(E(\nu))$ holds if and only if ν is α -invariant.

Example. Let $K = \{c_0, c_1, c_2\}$ be the cyclic group \mathbb{Z}_3 of order three such that $c_1^3 = c_0$, $c_1^2 = c_2$, $c_1^* = c_2$, and $c_2^* = c_1$ c_1 . Let $H = \{d_0, d_1\}$ be the hypergroup of order two arising from random walk on edges of a regular triangle where $d_1^2 = \frac{1}{2}d_0 + \frac{1}{2}d_1$, $d_1^* = d_1$, and $w(d_1) = 2$. Then we note that the hypergroup *H* is realized in $A(K)$ by the relation $d_0 = c_0$ and $d_1 = \frac{1}{2}c_1 + \frac{1}{2}c_2$. We can interpret that this hypergroup H is an orbital hypergroup by an action α of the group $G = \{e, g\}$ $(g^2 = e)$ of order two on *K* such that $\alpha_q(c_1) = c_2$ and $\alpha_q(c_2) = c_1$. We can also interpret that this hypergroup H is a generalized orbital hypergroup by the conditional expectation *E* from $A(K)$ onto $A(H)$ such that $E(c_0) = d_0$ and $E(c_1) = E(c_2) = \frac{1}{2}c_1 + \frac{1}{2}c_2 = d_1$. In this case the Haar measures μ_K of *K* and μ_H of *H* are given by 2 1 2 2 1 2 2 1 2

$$
\mu_K = C_0 + C_1 + C_2,
$$

$$
\mu_H = d_0 + 2d_1.
$$

We note that

$$
E(\mu_K) = E(c_0) + E(c_1) + E(c_2)
$$

$$
= d_0 + d_1 + d_1
$$

$$
= d_0 + 2d_1
$$

$$
= \mu_H.
$$

For $v = a_0c_0 + a_1c_1 + a_2c_2 \in M^1(K), E(v) = a_0d_0 + (a_1 + a_2)d_1$ we have

$$
S_{\mu_{R}}(\nu) = -a_{0} \log a_{0} - a_{1} \log a_{1} - a_{2} \log a_{2},
$$

$$
S_{\mu_{B}}(E(\nu)) = -a_{0} \log a_{0} - (a_{1} + a_{2}) \log \frac{a_{1} + a_{2}}{2}.
$$

Theorem asserts that the equality $S_{\mu_K}\!(\nu) = S_{\mu_H}\!(E\!(\nu))$ holds if and only if $a_1 = a_2$ which is equivalent to say that ν is an α -invariant measure.

References

- (1) Bloom, W.R. and Heyer, H. : Harmonic Analysis of Probability Measures on Hypergroups, 1995, Walter de Gruyter, de Gruyter Studies in Mathematics 20.
- (2) Funakoshi, Y. : Entropy of probability measures on finite commutative hypergroups, Bachelor's thesis(Japanese), 2007.
- (3) Funakoshi, Y. and Kawakami, S. : Entropy of probability measures on compact commutative hypergroups, in preparation.
- (4) Heyer, H., Jimbo, T., Kawakami, S., and Kawasaki, K. : Finite commutative hypergroups associated with actions of finite abelian groups, Bull. Nara Univ. Educ., Vol. 54 (2005), No.2., pp.23-29.
- (5) Heyer, H., Katayama, Y., Kawakami, S., and Kawasaki, K. :

Extensions of finite commutative hypergroups, Scientiae Mathematicae Japonicae, 65, No. 3 (2007), pp.373-385.

- (6) Kawakami, S. : Extensions of commutative hypergroups, to appear in Infinite Dimesional Harmonic Analysis IV, World Scientific, 2008.
- (7) Kawakami, S. and Nakano, F. : Entropy of states on finite commutative hypergroups, in preparation.
- (8) Kawakami, S. and Tai, M. : Entropy of probability measures on motion hypergroups, in preparation.
- (9) Wildberger, N.J. : Finite commutative hypergroups and applications from group theory to conformal field theory, Applications of Hypergroups and Related Measure Algebras, Amer. Math. Soc., Providence, 1994, pp.413-434.
- (10) Wildberger, N.J. : Duality and entropy for finite abelian hypergroups, preprint, Univ. of NSW (1989).