
1. Introduction

Roughly speaking, the hypergroup convolution is a

probabilistic extension of the group convolution. The

concept of convolution of measures on a locally com-

pact group has been generalized beyond the group case

in the axiomatic setting of a hypergroup, due to C.F.

Dunkl, R.I. Jewett, and R. Spector around 1975. 

In this paper we establish a notion of entropy of

probability measures on finite commutative hyper-

groups which is compatible with usual entropy of ran-

dom walks on finite symmetric regular graphs.

Wildberger(10) studied a certain entropy of probability

measure on finite hypergroups related with informa-

tion theory. Our definition of entropy is different from

his notion of entropy. 

Let K = {c0,c1, … ,cn} be a finite commutative hyper-

group with the *-algebra A(K). We call the invariant 

measure μ=μK = w(ck)ck on K the canonical Haar

measure of K. 

For a probability measureν= akck on K, we define

a entropy Sμ(ν) ofνrelative toμby 

Sμ(ν) =－ν(log ) =－ ak log .

Letν0 denote the normalized Haar measure of K which

is given byν0 = μ. 

Then we have the following results. 

In Theorem 1 we show 0 Sμ(ν) log w(K) and we

characterize the probability measureνsuch that the

entropy Sμ(ν) attains the maximum value. 

In Theorem 2 we show the following. Let H =

(H, A(H)) be a generalized orbital hypergrgroup of K =

(K, A(K)) by the conditional expectation E from A(K)

onto A(H) such that H = E(K). Then μH = E (μK) holds for

the canonical Haar measures μK of K and μH of H. For a

probability measureνon K we have SμK
(ν) SμH

(E(ν)).

Moreover, the equality SμK
(ν) = SμH

(E(ν)) holds if and

only ifν= E(ν) ∈ A(H). 

This work has been done by developing some

results in bachelor's thesis(2) by the first author in 2007. 

2. Preliminaries 

We recall some notions and facts on finite commu-

tative hypergroups from Bloom-Heyer's Book (1) and

Wildberger's report(9). K := (K, A) is called a finite com-

mutative hypergroup if the following conditions (1)～

(6) are satisfied. 

(1) A is a *-algebra over with the unit c0. 

(2) K = {c0, c1, … , cn } is a linear basis of A. 

(3) K * = K. 
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(4) cicj = nk

ij ck, where nk

ij is a non-negative real

number such that

c*
i = cj n0ij > 0,

c*
i =/ cj n0ij = 0.

(5) nk

ij = 1 for any i, j.

(6) cicj = cjci for any i, j. 

We often denote A by A(K) for K = (K, A). The

weight of an element ci∈ K is defined by w(ci) := (n0ij )－1

where cj = c*
i , and the total weight of K is given by

w(K ) :=Σn

i=0 w(ci). 

Let M1(K ) denote the set of probability measures

on K, i.e. 

M
1(K) := {ν= akck : ak 0 (k = 0, 1, …, n), ak = 1}.

Forν=Σn

k=0 akck∈ A(K), support ofνis defined by

supp(ν) := {ck : ak =/ 0,  k = 0, 1, …, n}. 

Letω(K) denote the normalized Haar measure

of K which is given by 

ω(K) = ck.

Let A be a *-algebra with the unit c0 and B be a *-

subalgebra of A with the unit c0. Then a linear mapping

E from A onto B is called a conditional expectation if

the following conditions are satisfied. 

(1) E(c0) = c0.

(2) E(yxz)= yE(x)z for x∈A,  y, z∈B. 

(3) E(x* x) 0. 

Let H = (H, A(H)) and K = (K, A(K)) be finite hyper-

groups such that the *-algebra A(H) is realized in the *-

algebra A(K). We call H a generalized orbital hyper-

group of K if there exists a conditional expectation E

from A(K) onto A(H) such that H = E(K). This notion is a

generalization of a usual orbital hypergroup.

3. Entropy of probability measures 

Let K = {c0, c1, … , cn} be a finite commutative hyper-

group with the *-algebra A(K). We call the invariant

measureμK = w(ck)ck on K the canonical Haar meas-

ure of K. This μK is often denoted by μwhen K is obvi-

ous. For a probability measureν= akck on K, we de 

fine a entropy Sμ(ν) of νrelative toμby 

Sμ(ν) =－ν(log ) =－ ak log .

Letν0 denote the normalized Haar measure of K

which is given byν0= μ. Then we have the follow-

ing theorem. 

Theorem 1. The entoropy Sμ(ν) is non-negative

and Sμ(ν) log w(K). The entropy Sμ(ν) attains the max-

imam value log w(K) if and only ifν=ν0. Moreover, Sμ(ν)

= 0 if and only if ak =1 for some k such that w(ck) = 1. 

Proof. By the fact that 0 1, －ak log

0. Then it is clear that Sμ(ν) 0. Suppose that Sμ(ν) =

0. Then －ak log =0 for all k. This implies that 

= 0 or 1. If = 1 for some k then ak = w(ck). Since 0

ak 1 and w(ck) 1, we obtain ak = 1 and w(ck) = 1. We

note that aj =0 for all j such that j =/ k. Moreover, apply-

ing Jensen's inequality, it is easy to see that Sμ(ν) =

log w(K) if and only if = w(K) for all k, namely ak=

. This implies thatν=ν0. 
[Q.E.D.]

4. Entropy and generalized orbital
hypergroups 

Let H = (H, A(H)) and K = (K, A(K )) be finite commu-

tative hypergroups such that the *-algebra A(H) is real-

ized in the *-algebra A(K). We call H a generalized

orbital hypergroup of K if there exists a conditional

expectation E from A(K) onto A(H) such that H = E(K).

When an action α of a finite group G on a hypergroup K

is given, an orbital hyeprgroup H = Kα is defined by the

conditional expectation E by 

E(x) = αg(x)  for x∈ A(K). 

We note that many hypergroups are obtained as gener-

alized orbital hypergroups which are not necessarily

usual orbital hypergroups. Refer to our paper(4). 

Theorem 2. Let H = (H, A(H)) be a generalized

orbital hypergrgroup of K = (K,A(K)) by a conditional

expectation E from A(K) onto A(H) such that H = E(K).

ThenμH = E(μK) holds for the canonical Haar measures

μK of K andμH of H. For a probability measureνon K

we have SμK
(ν) SμH

(E(ν)). Moreover, the equality SμK
(ν)

= SμH
(E(ν)) holds if and only if ν= E(ν)∈ A(H). 

Proof. Let K and H be given by K = {c0, c1,… , cn}

and H = {d0, d1,… , dm}, where c0 is the unit of K and d0

is the unit of H, and c0 = d0. For each dj∈H, set 
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K( j ) = {c∈ K : E(c) = dj}   

= {c1( j ), c2( j ), … , cnj
( j )}

We note that 

K = K( j ) and  nj = n

Moreover, it is easy to see that each dj∈ H is written as 

dj = ai( j )ci( j ) where  ai( j ) = 1.

By this fact, we see that djμK =μK for each dj∈H. Hence

djE(μK) = E(djμK) = E(μK). This implies that the measure

E(μK) is H-invariant so that E(μK) is a Haar measure of H.

Therefore E(μK) is written by E(μK) = cμH for some con-

stant c > 0. Since μK and μH is represented as 

μK = w(ck)ck, μH = w(dj)dj,

and E(c0) = d0, we see that the constant c must be 1 so

that μH = E(μK ) holds. The canonical Haar measure μK of

K is given by 

μK = w(ci( j))ci( j ),

where 

K( j) = {c1( j), c2( j), … , cnj ( j)}  and  K = K( j).

Since E(ci( j)) = dj,

E(μK ) = ( w(ci( j ))) dj.

By the fact thatμH =  E(μK ), we see that 

w(dj) = w(ci( j)).  

For a probability measureν= akck = ai( j)ci( j)
of K, E(ν) is given by

E(ν) = ( ai( j)) dj = bjdj.,

where bj = ai( j). Then we get the following equalities. 

SμK
(ν) =－ ai( j) log ,

SμH
(E(ν)) =－ bj log .

We may assume that ai( j) > 0. Hence we see that 

－ log = log

log = log = －log ,

by Jensens' inequality. Hence we see that 

－ ai( j )log －bj log .

Therefore we obtain that SμK
(ν) SμH

(E(ν)). Moreover,

it is also obtained that the equality holds if and only if

= for all i =1, 2, … , nj. This implies that

ai( j )ci( j ) = bjdj, namely, ν= E(ν)∈A(H).

[Q.E.D.] 

Remark. When H is an orbital hypergroup of K

by an actionαof a group G on K, the conditionν= E(ν)

∈A(H) is equivalent to say thatν isα-invariant. 

Therefore we note that the equality SμK
(ν) = SμH

(E(ν))

holds if and only ifν isα-invariant. 

Example. Let K = {c0, c1, c2} be the cyclic group 3

of order three such that c31 = c0, c21 = c2, c
*
1 = c2, and c*

2 =

c1. Let H = {d0, d1} be the hypergroup of order two aris-

ing from random walk on edges of a regular triangle

where d21 = d0 + d1, d
*
1 = d1, and w(d1) = 2. Then we

note that the hypergroup H is realized in A(K) by the

relation d0 = c0 and d1 = c1 + c2. We can interpret that

this hypergroup H is an orbital hypergroup by an action

αof the group G = {e, g} (g2 = e) of order two on K such

thatαg(c1) = c2 andαg(c2) = c1. We can also interpret that

this hypergroup H is a generalized orbital hypergroup

by the conditional expectation E from A(K) onto A(H)

such that E(c0) = d0 and E(c1) = E(c2) = c1 + c2 = d1. In

this case the Haar measures μK of K and μH of H are

given by

μK = c0 + c1 + c2,

μH = d0 + 2d1.

We note that

E(μK) = E(c0) + E(c1) + E(c2)

= d0 + d1 + d1

= d0 + 2d1

= μH.

For ν= a0c0+ a1c1+ a2c2∈ M
1(K), E(ν) = a0d0+ (a1+ a2)d1,

we have

SμK
(ν) = －a0 log a0 － a1 log a1 － a2 log a2,

SμH
(E(ν)) = －a0 log a0 － (a1 + a2) log .

Theorem asserts that the equality SμK
(ν) = SμH

(E(ν))

holds if and only if a1 = a2 which is equivalent to say

thatνis anα-invariant measure.
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