ホランダイト型チタン酸化物の光電子分光

增 井 壮 太 奈良教育大学大学院在学 中 村 元 彦 奈良教育大学理科教育講座(物理学)

Photoelectron Spectroscopy for Hollandite-type Titanium Oxidest

Sota MASUI

(Graduate School of Education, Nara University of Education)

Motohiko NAKAMURA

(Department of Physics, Nara University of Education)

Abstract

In this research, electronic structure of the hollandide-type titanium oxides $Ba_{1.06}Ti_8O_{16}$ made during the N₂ gas and the hollandide-type titanium oxides $Ba_{1.58}Ti_8O_{9.38}$ made during the atmosphere were investigated by means of X-ray and Ultraviolet-ray photoelectron spectroscopy. $Ba_{1.06}Ti_8O_{16}$ in a UPS spectrum near Fermi level by 310 K and 190 K, has been formed metal-insulator transition because a gap opens. A UPS spectrum near Fermi level of metallic phase exhibits a power-law dependence on the electron binding energy, indicating that conduction electrons in $Ba_{1.06}Ti_8O_{16}$ behave as a Luttinger liquid. In addition, a Ti atom is mixed valence state the metallic phase and the insulator look from a XPS spectrum, but its ratio is changing before and after. On the other hand, $Ba_{1.58}Ti_8O_{9.38}$, in a UPS spectrum near Fermi level by 310 K, is the insulator because a gap open, and in a XPS spectrum by 310 K, is not mixed valence state in a Ti atom.

キーワード:光電子分光,1次元物質,ホランダイト型 チタン酸化物

1. はじめに

現実に存在する物質は、そのほとんどが3次元の物質 であるが、結晶構造の異方性が大きく、鎖状または層状 の構造をもつものがある。鎖あるいは層平面に垂直な方 向の相互作用が弱い場合には、1次元または2次元の系 をなしていると考えられる。このような低次元の系では、 様々な相互作用とそれが生み出す物性現象、たとえばパ イエルス転移や朝永-ラッティンジャー液体などのよう な現象が現れる。特に朝永-ラッティンジャー液体などのよう な現象が現れる。特に朝永-ラッティンジャー液体などのよう な現象が現れる。ちに朝永-ラッティンジャー液体などのよう な現象が現れる。ちに朝永-ラッティンジャー液体につ いては近年実験的研究によって検証されてきている。さ らに、低次元系では粒子間の多体相互作用などに対して ある程度厳密な知見を得ることができるため、高次元系 の理解の手掛かりともなる。こういった特徴から低次元 物質についての研究が行われている。

Key Words : photoelectron spectroscopy material of one-dimension hollandide-type titanium oxides

1次元物質のひとつにホランダイト型酸化物がある。 ホランダイト型酸化物A_xM₈O₁₆とは、MO₆八面体が稜を 共有してc軸方向にジグザグチェーンをなして伸びてお り、それらの4つが頂点を共有してc軸方向に1次元的な トンネルを形成している物質である⁽¹⁾。トンネルの中に Aイオンが入り、このAイオンが組成不定比性(1≤x≤2) を示し得ることが特徴である。これにより、1次元2重鎖 を形成するMは混合原子価状態になり、その平均価数は Aの価数および量によって決定される。このように、ナ ノサイズのトンネルをもった結晶構造によってイオンが トンネルを自由に出入りできるため、電池の電極材料⁽²⁾ やイオンの吸着材料⁽³⁾としての利用が検討され、多くの 元素の組み合わせで多様な研究がされている。

本研究において測定結果の比較対象とするBa_xTi₈O₁₆ は、A=Ba, B=Ti (Ti³⁺とTi⁴⁺の混合電子状態), x=1.06 である。 $Ba_{1.06}Ti_8O_{16}$ は1次元鎖のc軸方向にの電気抵抗 率が垂直方向に比べて1~2桁小さくなることが報告さ れている⁽¹⁾。また、電気抵抗率及び逆帯磁率の温度依存 性の研究により、Tc = 220 (K)付近で金属的なふるまい から絶縁体的なふるまいに変化することが報告されてい る⁽¹⁾。

しかし、その転移の機構は明らかになっていない。したがって本研究では、ホランダイト型チタン酸化物であるBa_{1.06}Ti₈O₁₆、及び作製段階で酸素量を変化させたBa_{1.58}Ti₈O_{9.38}の結晶を作製し、その電子状態を明らかにするために光電子分光で観測を行った。

2. 実験方法

2.1. 試料の作製

試料には、BaTiO₃(ナカライテスク社製,95%)とTiO (和光純薬工業社製,99.9%)とTi(ニラコ社製99.3%) の3種類の粉末を使用した。化学量論比になるように、 それぞれの粉末を秤量して混合した。ハロゲンランプの 光を回転楕円鏡で集光して原料を融解し、融解した部分 を徐々に光源の焦点から遠ざけて、ゆっくり冷却する ことによって結晶を育成するFloating Zone法によって、 原料ロッドから窒素雰囲気中でBa_{1.06}Ti₈O₁₆の結晶を、大 気中でBa_{1.58}Ti₈O_{9.38}の結晶を成長させた。試料はダイヤ モンドカッターを用いて適当な大きさに切り出し、電気 伝導性接着剤を用いて光電子分光装置の真空槽内に導入 するための試料ホルダーに密着、固定した。清浄面は、 ダイヤモンドヤスリで研磨することで得た。

2.2.実験方法

本研究では、窒素雰囲気中で作製したBa_{1.06}Ti₈O₁₆及 び、大気中で作製したBa_{1.58}Ti₈O_{9.38}において、X線光電子 分光法(XPS)、及び紫外線光電子分光法(UPS)を用いて 試料表面の分析を行った。装置は島津製作所のKratos Analysis社のAXIS-HSを使用した。測定にはMg線源、 及びAl線源を使用し、測定条件を310K、及び190K(測 定試料の転移温度以下)で測定を行った。

測定値のフィッティングにはExcelのソルバー機能を 使用した。

3. 実験結果と考察

3.1. 定量分析

まず,それぞれの試料から得られたスペクトルを フィッティングして定量分析を行い,作製した試料が 今回の測定の対象物であるかを確かめた。その結果, $Ba_{1.06}Ti_8O_{16}$ 及び, $Ba_{1.58}Ti_8O_{9.38}$ の組成比の誤差はそれぞれ 10%以内であることを確認した。

3. 2. Valence Band スペクトル

310Kで測定したBa_{1.06}Ti₈O₁₆のValence Band のUPSス ペクトルは図1のようになった。

点は測定値を表している。上図に示したBa₁₀₆Ti₈O₁₆の Valence Bandスペクトルについて、フェルミ・ディラッ ク分布関数でフィッティングを試みたが、フィッティン グすることができなかった。

そこで、以下の式(*)でのフィッティングを試みた。

$$I(E) = \mathbf{A} \cdot E^a \tag{(*)}$$

ここで, EはフェルミエネルギーE_Pから測定した結合 エネルギー, aは臨界指数, Aは定数である。実際は有 限温度におけるラッティンジャー液体のスペクトル関数 の明確な計算方法は存在しないが, 測定機器の分解能, 及び温度の適当なブロードニングを含めてガウス幅と し, フィッティングを行った。

310Kで測定した $Ba_{1.06}$ Ti₈O₁₆のValence Band のUPSス ペクトルを前頁の式(*)でフィッティングし、そのフェ ルミ準位近くをみたものを図2に示す。

点は測定値,実線は式(*)でのフィッティング曲線示 している。フィッティングした結果,E_F ~ 0.4eVの範囲 で最適な a の値は1.09とみられる。この値は1次元ハバー ド模型の上限を超えているが,オンサイトクーロンの典 型的なハバード模型とは異なり,クーロン相互作用の長 距離成分が重要であることを示していると考えられる。 1次元導体であるTMTSF塩⁽⁴⁾や (DMe-DCNQI) 2Cu⁽⁵⁾ の場合, a \leq 1 となることが示されている。したがって, a が 1 より大きな値になることは,必ずしもあり得ない ことではない。Valence Bandのスペクトルがべき乗の 関数でフィッティングできたことから,Ba_{1.06}Ti₈O₁₆は擬 1 次元物質で,ラッティンジャー液体であることを示し ている。

 $(\mathrm{Ba}_{1.06}\mathrm{Ti}_8\mathrm{O}\;310\,\mathrm{K},\;\;190\,\mathrm{K},\;\;\mathrm{Ba}_{1.58}\mathrm{Ti}_8\mathrm{O}_{9.38}\;310\,\mathrm{K})$

また, Ba_{1.06}Ti₈O₁₆は310Kでは金属相であるが, 190K, 及び酸素量を変化させたBa_{1.58}Ti₈O_{9.38}ではフェルミ準位 近傍のUPSスペクトルにギャップが見られたため, 絶縁 体に転移していることがわかった。

3.3.Ti 2pスペクトル

Ba_{1.06}Ti₈O₁₆(310K)とBa_{1.06}Ti₈O₁₆(190K),及びBa_{1.58}Ti₈ O_{9.38}(310K)のTi 2pのXPSスペクトルの比較を図3に示 す。

図3は上から順に丸印がBa_{1.06}Ti₈O₁₆(310K), バツ印 がBa_{1.06}Ti₈O₁₆(190K), 三角印がBa_{1.58}Ti₈O₉₃₈(310K)のTi 2pスペクトルを示している。図3より, Ti 2p(3/2) ピー ク(一番低結合エネルギー側のピーク)の形状がそれぞ れ異なっていることがみてとれる。そこで,

Ti 2p (3/2) スペクトルのみを比較したものを図4示す。

図4も図3と同様に、上から順に丸印が $Ba_{1.06}Ti_8O_{16}$ (310K)、バッ印が $Ba_{1.06}Ti_8O_{16}$ (190K)、三角印が $Ba_{1.58}Ti_8$ $O_{9.38}$ (310K)のTi 2p(3/2)スペクトルを示している。図4から、 $Ba_{1.06}Ti_8O_{16}$ (310K)及び $Ba_{1.06}Ti_8O_{16}$ (190K)のスペクトル は2つのピークで構成されているのに対し、 $Ba_{1.58}Ti_8O_{9.38}$ (310K)のスペクトルは1つのピークのみで構成されている ようにみえる。

そこで、 $Ba_{1.06}Ti_8O_{16}$ (310K) のTi 2p (3/2) スペクトル をフィッティングし、どのようなピークで構成されてい るか調べることにした。

図4 Ti 2p (3/2) スペクトルの比較 (Ba_{1.06}Ti₈O₁₆ 310K, 190K, Ba_{1.58}Ti₈O_{9.38} 310K)

図5 Ti 2p (3/2) スペクトルとフィッティング曲線 (Ba_{1.06}Ti₈O₁₆ 310K)

点は測定値,実線はフィッティング曲線,点線(---) はTi⁴⁺に起因するピーク,点線(----)はTi³⁺に起因 するピークを示している。**図5**から分かるように, Ba_{1.06}Ti₈O₁₆はTi⁴⁺とTi³⁺の混合原子価状態になってい る。その強度比はTi⁴⁺:Ti³⁺≈1:0.182であった。同試 料において,転移温度(220K)以下である190Kで同 様に測定を行うと,Ti⁴⁺:Ti³⁺≈1:0.189となり,転移 温度以下ではわずかにTi³⁺の強度が増加していること がわかった。しかし,酸素量を変化させて作製した試 料Ba_{1.58}Ti₈O_{9.38}において,310Kで同様に測定を行うと, Ti⁴⁺のみで構成されていることが確認された。

この結果から,低温にすることによる絶縁体転移に はTi³⁺の含有率の上昇が関係している可能性が考えられ る。また,酸素量を変化させることによる絶縁体転移に はTiが混合原子価状態ではなくなったことが原因であ る可能性が考えられる。

3.4. Ti 3sスペクトル

Ti 3sスペクトルには、Ti³⁺が存在することにより 3s-3d交換分裂が見られることが期待される。3s-3d交換 分裂とは、Ti³⁺の電子配置は[Ar]3d¹であり1個のd電子 が不対電子となる(合成スピンS=1/2)ことで、3sスペ クトルが2つに分裂して観測されることである。そこで、 Ti⁴⁺とTi³⁺の混合原子価状態になっているBa₁₅₈Ti₈O_{9.38} (310K)のTi 3sスペクトルは、どのようなピークで構 成されているかみていく。

310Kで測定した $Ba_{1.06}Ti_8O_{16}$ のTi 3sのXPSスペクトル をフィッティングしたグラフを図6に示す。

(Ba_{1.06}Ti₈O₁₆ 310K)

強度比はTi⁴⁺:Ti³⁺≃1:0.219であった。同試料にお

いて転移温度(220K)以下である190Kで同様に測定を 行うと。Ti⁴⁺:Ti³⁺ \approx 1:0.299となり、2p(2/3)と同様 に、転移温度以下ではTi³⁺の強度が増加していること がわかった。また、酸素量を変化させて作製した試料 Ba_{1.58}Ti₈O_{9.38}において310Kで同様に測定を行うと、Ti⁴⁺ のみで構成されていることが確認された。

先ほどTi 2pスペクトルで述べた考察と同様に,低温 にすることによる絶縁体転移にはTi³⁺の含有率の上昇が 関係している可能性が考えられ,酸素量を変化させるこ とによる絶縁体転移にはTiが混合原子価状態ではなく なったことが原因である可能性が考えられる。

4. 結論

本研究において,ホランダイト型チタン酸化物である Ba₁₀₆Ti₈O₁₆及びBa₁₅₈Ti₈O₉₃₈の結晶を作製し,その電子状 態を明らかにするために光電子分光で観測を行った。そ の結果, Valence BandのUPSスペクトルにおける解析 により, Ba₁₀₆Ti₈O₁₆は擬1次元物質で,ラッティンジャー 液体であるとみられ,310Kでは金属相だが,190Kでは 絶縁体相に転移していることがわかった。また,酸素量 を変化させることで絶縁体に転移することがわかった。

また、Ti 2p(3/2)及びTi 3sのXPSスペクトルにおける解析により、Ba_{1.06}Ti₈O₁₆はTi⁴⁺とTi³⁺の混合原子価状態であることが確認でき、また金属相に比べて絶縁体相ではTi³⁺の強度が増加することが示された。また、酸素量を変化させたBa_{1.58}Ti₈O_{9.38}においてはTi³⁺は存在せず、Ti⁴⁺のみで構成されていることが示された。

謝辞

この度,本研究において試料作製や解析についてご助 言してくださった永田祐未氏に深く感謝致します。

文献

- R.Murata et al : Electronic phase transition in hollandite titanates Ba_xTi₈O_{16+δ}. Phys. Rev. B 92, 220408(R) (2015).
- (2) 加納博文,馮旗,大井健太:マンガン酸化物イオンふる い結晶(2)電気化学的ホスト・ゲスト反応,日本イオン 交換学会誌9巻,1998.
- (3) 馮旗,加納博文,大井健太:マンガン酸化物イオンふる い結晶(1)調製とイオン吸着特性,日本イオン交換学会 誌9巻,1998.
- (4) B.Dardel, M.Grioni, D.Malterre, P.Weibel, Y.Baer, J.Voit and D.Jerome : Possible Observation of a Luttinger-Liquid Behaviour from Photoemission Spectroscopy of One-Dimensional Organic Conductors, Europhys. Lett.24 (1993) 687.
- (5) A Sekiyama, A Fujimori, S Aonuma, H Sawa, R

平成30年4月27日受付,平成30年6月25日受理