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ABSTRACT

A construction of a spatial graph from a strongly invertible knot was developed
by the second author, and a necessary and sufficient condition for the given
spatial graph to be hyperbolic was provided as well. The condition is improved
in this paper. This enable us to show that certain classes of knots can yield
hyperbolic spatial graphs via the construction.
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Introduction

Throughout this paper the category we will work with is differentiable. We start this
section with recalling several basic terminologies frequently used in this paper. Let M
be a compact orientable three-dimensional manifold. If it has boundary, then we
denote the boundary by ∂M . A spatial graph in M means the image of an embedding
of a graph, which will be regarded as a one-dimensional cellular complex as usual. We
often identify a spatial graph and the graph of its source in this paper; a vertex, an
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edge, etc. of a spatial graph G refers that of the graph appearing as the source of G.
Spatial graphs are assumed to be finite throughout this paper.

A spatial graph is especially called a link if it is homeomorphic to a disjoint union
of circles, and a link is particularly called a knot if its connected component is one.
Let N(G) be a regular neighborhood of a spatial graph G in M , and let E(G) be the
exterior of G in M , namely E(G) is the closure of M −N(G) in M . Suppose that any
connected components of ∂M are closed orientable surfaces except spheres. Then a
spatial graph G in M is said to be hyperbolic if E(G) minus all the toral boundary
components admits a complete hyperbolic structure of finite volume with geodesic
boundary.

Let G be a spatial graph in the three-dimensional sphere S3, and ϕ an orientation-
preserving self-diffeomorphism of the pair (S3, G). For a positive integer n, we denote
by ϕn the map obtained by iterating ϕ n times. Then ϕ is said to be periodic of order n
when ϕm is not the identity map on (S3, G) for any integer m with 1 ≤ m ≤ n − 1,
and ϕn is the identity map. It is known that if such ϕ has a fixed point, then the
fixed point set is homeomorphic to a circle. See [10, chapter 1] for example. A
spatial graph G is said to be strongly periodic of order n if there is a periodic self-
diffeomorphism ϕ of order n such that the fixed point set of ϕ intersects with each
connected component of G at exactly two points, and that n is the maximal period
that (S3, G) can admit with the same fixed point set. Such a self-diffeomorphism
is called a strong inversion when n = 2, and strongly periodic links of order 2 are
especially called strongly invertible links.

In [21], the second author has developed a method, called the n/2-fold cyclic
branched covering, to construct strongly periodic spatial graphs in S3 from a strongly
invertible link L in S3. Let α be the axis of a strong inversion ι of the pair (S3, L).
Then the construction consists of the following two steps:

Step 1. Take a quotient of (S3, L) by ι. Then we have S3/ι, which is homeomorphic
to S3. In S3/ι, we have a spatial graph G as the quotient of L by ι, which has
two univalent vertices on α/ι = α.

Step 2. Take the n-fold cyclic branched covering of (S3/ι,G) along α. Then we have
the n-fold cyclic branched covering of S3/ι, which is again homeomorphic to S3.
In the n-fold cyclic branched covering of S3/ι, we have a spatial graph G′ as
the pre-image of G by the covering.

We call the spatial graph G′ obtained by this procedure the n/2-fold cyclic branched
covering of L along α. A spatial graph is called a θn-curve for some integer n ≥ 3
when each connected component has exactly two vertices of valency n. If we start with
a strongly invertible link, then the n/2-fold cyclic branched covering yields strongly
periodic θn-curves. We have arcs as the 1/2-fold cyclic branched covering when n = 1,
and we then call the union of them as a strongly periodic θ1-curve in this paper.
Similarly we have the original L as the 2/2-fold cyclic branched covering when n = 2,
and we occasionally call it a strongly periodic θ2-curve.
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Figure 1 – The process of constructing n
2 -fold cyclic branched covering

of the trefoil knot

1. When can we have strongly periodic hyperbolic θn-curves?

Let M be a three-dimensional manifold admitting a periodic self-diffeomorphism ϕ
of order n. Then a submanifold S of M is said to be equivariant under ϕ if either
ϕi(S) = S or ϕi(S) ∩ S = ∅ holds for any integer i with 1 ≤ i ≤ n − 1. Let Γ be a
finite group acting on M . Then S is said to be Γ-equivariant if it is equivariant under
the action of any element of Γ.

Let K be a non-trivial strongly invertible knot in S3 admitting a strong inversion
with axis α, and θKn the strongly periodic θn-curve obtained from K by the n/2-fold
cyclic branched covering along α. Then it has been essentially proved in [21] that θKn
is hyperbolic for any n ≥ 3 if and only if E(K ∪ α) contains no essential tori which
are equivariant under the action of the strong inversion.

1.1. Main theorem

The first purpose of this paper is to simplify and improve the result given in [21].
A spatial graph in S3 is said to be trivial when it can be ambient isotopic into an
embedded two-dimensional sphere.

Theorem 1.1. Let K be a non-trivial strongly invertible knot in S3 admitting a
strong inversion with axis α, and θKn the strongly periodic θn-curve obtained from K
by the n/2-fold cyclic branched covering along α. Then the following conditions are
equivalent:

(i) For any n ≥ 3, θKn is hyperbolic.

(ii) For some n ≥ 3, θKn is hyperbolic.

(iii) Any embedded torus in E(K ∪ α) is compressible in E(K ∪ α).

(iv) Any embedded equivariant torus in E(K ∪ α) is compressible in E(K ∪ α).
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(v) Any embedded torus in E(K) which is disjoint from α is compressible in E(K).

(vi) Any embedded equivariant torus in E(K) which is disjoint from α is compressible
in E(K).

There are some remarks about this theorem.

• We shall use standard language in three-dimensional topology. We here include
some of them for reader’s convenience. See [7] on such terminologies for example.
Let M be a compact three-dimensional manifold.

A properly embedded surface F in M other than a sphere or a disc is said to be
compressible in M if it admits a disc D such that F ∩D = F ∩ ∂D = ∂D and
that ∂D is not null-homotopic on F . Such a disc is called a compressing disc
for F . Otherwise F is said to be incompressible.

Analogously, a disc D′ embedded in M is called a boundary-compressing disk
for F if ∂D′ = a ∪ b, where a := F ∩ D′ = F ∩ ∂D′ is an arc which is not
parallel to ∂F in F and b := ∂M ∩D′ = ∂M ∩∂D′ is an arc in ∂M which is not
homotopic into ∂F relative ∂b. If there is no boundary-compressing disk for F ,
then F is said to be boundary-incompressible.

The manifold M is said to be irreducible if any embedded sphere bounds an
embedded ball, and boundary-irreducible if each connected component of ∂M is
incompressible.

Two embedded surfaces F and F ′ are said to be parallel if they bound a product
region in M . In particular, when F is parallel to a subsurface of ∂M , it is said
to be boundary-parallel.

Finally, an embedded surface is said to be essential if it is incompressible,
boundary-incompressible, and not boundary-parallel.

• Though we do not mention α in the notation θKn , the spatial graph θKn depends
not only on both K and n but also on the choice of the axis α. See subsection 2.2
for such an example.

• Since ∂E(K ∪ α) consists of an orientable closed surface of genus three, there
is no embedded torus which is boundary-parallel. Thus Condition (iii) means
that E(K ∪ α) is atoroidal.

• The assumption that K is a knot is essential. Suppose that K is a two-
component non-trivial torus link and α is the axis of the strong inversion. See
figure 2 for example. Then K is known to be strongly invertible, and E(K ∪ α)
is known to be atoroidal. But it has been proved as Theorem 1.3 in [21] that
θKn is not hyperbolic.
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Figure 2 – Two-component torus link and its axis of a strong inversion

1.2. Equivariant Torus Theorem

In this subsection we give our version of the so-called Equivariant Torus Theorem. It
should be emphasized that the boundary of the manifold in the proposition below is
not assumed to be incompressible.

Proposition 1.2. For a compact orientable irreducible three-dimensional manifold
with non-empty boundary, if it admits an action of a finite group and if it contains an
essential torus, then it contains an embedded equivariant incompressible torus as well.

To prove this proposition, we prepare a definition. Let M be an orientable three-
dimensional manifold, and let S be an essential torus properly embedded in M . Then
we say that S is said to be canonical if any other properly embedded essential torus
or annulus can be isotoped to be disjoint from S.

Lemma 1.3. For a compact orientable irreducible three-dimensional manifold, if it
admits an action of a finite group and if it contains a canonical torus, then the torus
is isotoped to be equivariant under the action.

Proof. Let M be a compact orientable irreducible three-dimensional manifold admit-
ting an action of a finite group Γ, and T a canonical torus in M . Then we can choose
a Γ-invariant Riemannian metric on M whose boundary has non-negative mean cur-
vature. Such a metric can be constructed by averaging any metric over the action.
Then we have a least area torus T ′ isotopic to T by virtue of the result in [3]. Pre-
cisely we use an extension of [3, Theorems 1.1 and 1.2] to the non-empty boundary
case, which is explained at the 3rd paragraph of [3, page 635]. Since the torus T ′ is
also canonical as is T , its images by the action are isotopically disjoint or coincident,
and thus they are actually distinct or coincident by an extension of [3, Theorem 6.2]
to the non-empty boundary case, which is also explained at the 3rd paragraph of
[3, page 635]. This indicates that T ′ is equivariant under the action.
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Proof of Proposition 1.2. LetM be a compact orientable irreducible three-dimensional
manifold admitting an action of a finite group, and T an essential torus in M .

If M contains a canonical torus, then it is isotoped to be equivariant under the
action by Lemma 1.3. So we assume that M has no canonical torus from now on.

Let us set M ′ := M if ∂M is incompressible. If, on the other hand, ∂M is com-
pressible, we set M ′ as follows. We consider a maximal set of compression discs
for ∂M , and compress ∂M along the discs. Then we have a sub-manifold N , possibly
disconnected, in M . By standard cut-and-paste argument together with the assump-
tion of the irreducibility for M , any incompressible surface in M can be isotoped
apart from ∂N . So we can find a torus T ′ in N which is isotopic to T in M . Then
we set M ′ as the connected component of N containing T ′.

Here we note that any toral component of ∂M ′ is boundary-parallel in M . For,
as mentioned above, any incompressible surface in M can be isotoped apart from
∂M ′ ⊂ ∂N . So the toral component must be boundary-parallel in M by the assump-
tions that there is no canonical torus in M and that ∂M ′ is incompressible in M by its
construction. This implies that T ′ is essential in M ′ since T ′ is not boundary-parallel
in M as is T .

As a result we thus find an irreducible three-dimensional submanifold M ′ contain-
ing an essential torus T ′ but not containing any canonical torus. Then M ′ must be
either a Seifert fibred space or an I-bundle by [16, Proposition 3.2]. Thus all connected
components of ∂M ′ are tori and all of them are, as claimed above, boundary-parallel
in M . This concludes that M ′ = M , and thus M contains an incompressible torus as
a boundary component, which gives an embedded equivariant incompressible torus.
This completes the proof of Proposition 1.2.

1.3. Lemmata for the proof of Theorem 1.1

In this subsection, we will prepare three lemmata to prove Theorem 1.1.
The first one would be well-known in three-dimensional manifold theory. Actually

a similar result is shown as Theorem in [5].

Lemma 1.4. Suppose that an irreducible three-dimensional manifold admitting an
action of a finite cyclic group contains an embedded torus equivariant under the action.
If the torus is compressible, then there exists a compression disc which is equivariant
under the action.

Proof. Let M be an irreducible three-dimensional manifold admitting a non-trivial
action ϕ of period n, and let T be an embedded torus in M which is equivariant under
ϕ with compression disc D.

We first suppose that D has non-empty intersection with another ϕi(T ) for some
i ∈ {1, 2, . . . , n− 1}. Since ϕi(T ) are mutually disjoint, the intersection appearing on
D must consist of circles in the interior of D. Then, since M is irreducible, one can
reduce the circles which are inessential on the torus by isotopy. Take an inner-most
one on D, and replace T and D with ϕi(T ) and the chosen disc. Thus, without loss
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of generality, we can assume that there is a compression disc for such a torus having
no intersection with any other tori ϕi(T ), and we denote a pair of the torus and the
compression disc by T and D again.

Take an equivariant regular neighborhood N(T ) of T under ϕ, and we define a
submanifold W in M as follows:

W := M −
n⋃
i=1

ϕi(N(T )).

Here we take N(T ) sufficiently small so that D ∩W gives a compression disc in W
for ∂0W , where ∂0W is a connected component of ∂W given by one of two connected
components of ∂N(T ). We then apply the Equivariant Loop Theorem (see [22]) to
(W,∂W,D∩W ) so that we can find a new compression disc D′ for ∂0W in W , which
is equivariant under ϕ. Enlarging this disc and we can find a compression disc for T
in M , which is equivariant under ϕ.

We can prove the following two lemmata using this lemma.

Lemma 1.5. Let L be a strongly invertible link in S3 admitting a strong inversion
with axis α, and θLn the spatial graph with axis αn which is obtained from L by
n/2-fold cyclic branched covering along α. Then, if any embedded equivariant torus
in E(θLn ∪αn) is compressible in E(θLn ∪αn) for some n ≥ 1, then so is it for all n ≥ 1.

Remark. Strongly periodic action on E(θL1 ∪ α1) means the trivial action. So an
embedded equivariant torus in E(θL1 ∪ α1) is nothing but an embedded torus, or in
other words, any embedded torus is an equivariant torus in E(θL1 ∪ α1) in our sense.

Proof. Our proof consists of the following two steps:

Step 1. Suppose that any embedded equivariant torus in E(θLn ∪ αn) is compressible
for some n ≥ 2, and prove that so is it in E(θL1 ∪ α1).

Step 2. Suppose that any embedded equivariant torus in E(θL1 ∪ α1) is compressible,
and prove that so is it in E(θLn ∪ αn) for any n ≥ 2.

By taking a regular neighborhood suitably, we can assume that E(θLn ∪αn) is an n-fold
cyclic covering space of E(θL1 ∪ α1).

To prove the first step, let T be an embedded (equivariant) torus in E(θL1 ∪ α1),
and we will find its compression disc in E(θL1 ∪ α1). Consider the preimage of T
in E(θLn∪αn) by the covering projection. It consists of either an equivariant torus, or a
tuple of mutually disjoint equivariant tori. Let ÜT be one of its connected components.
Then the assumption says that there is a compression disc for ÜT in E(θLn ∪ αn).
Furthermore E(θLn ∪ αn) is irreducible since so is S3 and E(θLn ∪ αn) ⊂ S3. So we
can apply Lemma 1.4 and find an equivariant compression disc for ÜT in E(θLn ∪ αn),
and the projection of the disc in E(θL1 ∪ α1) becomes the compression disc for T
in E(θL1 ∪ α1). We have thus proved the first step.
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To prove the second step, let T be an embedded equivariant torus in E(θLn ∪ αn),
and we will find its compression disc in E(θLn ∪ αn). Since T has no intersection with
the axis αn of ϕ, the projection of T by the quotient map induced by the action of ϕ
is an embedded torus in E(θL1 ∪α1). Since we are assuming that any embedded torus
in E(θL1 ∪ α1) is compressible, there is a compression disc for the projection of T .
Since the disc has no intersection with the branched set α1, its lift in E(θLn ∪ αn) is a
compression disc for T . We have thus proved the second step, which means that the
proof of Lemma 1.5 have been completed.

Lemma 1.6. Let G be a strongly periodic spatial graph in S3 admitting a periodic
action with axis α. If an embedded equivariant torus in E(G) which is disjoint from α
is compressible in E(G), then it has a compression disc which is disjoint from α
as well.

Proof. Let ϕ be the periodic of order n on (S3, G) with axis α. By taking a regular
neighborhood of G suitably, we can assume that E(G) admits the action of ϕ. Let
T be an embedded torus in E(G) which is equivariant under ϕ. Now we have its
compression disc in E(G) by the assumption of this lemma. Since E(G) is irreducible
as is S3, we can find an equivariant compression disc D for T by Lemma 1.4.

If D has no intersection with α, then we are done. So we assume D ∩ α 6=
∅ from now on. Since α is the fixed point set of the action on (S3, G) and since
D is equivariant under this action, we can say that ϕi(D) = D holds for any i ∈
{1, 2, . . . , n}, i.e., ϕ|D can be regarded as a periodic diffeomorphism on D. Then,
by the well-known classical result, there is an element r in the orthogonal group of
dimension two together with a homeomorphism h on D such that ϕ|D = h r h−1. See
[2, Theorem 3.1] for its modern proof. So we have the following two cases, depending
on the orientation of ϕ|D on D:

• ϕ|D, and thus r, is orientation-reversing, or

• ϕ|D, and thus r, is orientation-preserving.

If the first case happens, the fixed point set of r is a diameter of D and thus the
fixed point set of ϕ|D is an embedded arc on D, which is D∩α. We take a sufficiently
small regular neighborhood N(α) in E(G) so that D ∩ ∂N(α) consists of two arcs
parallel to D ∩ α. Then replace D ∩ N(α) by one of two simply-connected regions
on ∂N(α) bounded by four arcs: two of them come from T ∩ (∂N(α) − D) and the
other two arcs are parallel ones appearing as D∩∂N(α). We thus have a compression
disc for T which has no intersection with α.

We lastly consider the second case. Since r is non-trivial, the set of fixed points
for r consists of a single point, and so does the set of fixed points for ϕ|D. This means
that D ∩ α consists of a single point. The axis α is the unknot by the affirmative
solution of the Smith Conjecture. See [10, page 4]. So we can regard T as the boundary
of a trivially-embedded solid torus V with core curve α. SinceG∪α is connected by the
definition of strongly periodic θn-curve, and since T ∩α = ∅, V entirely contains G∪α.
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So the closure of E(G∪ α)− V is also a trivially-embedded solid torus. Therefore we
can find a compression disc for T = ∂V in E(G ∪ α)− V ⊂ E(G ∪ α), which induces
a compression disc for T in E(G ∪ α).

1.4. Proof of Theorem 1.1

Now we are in the position to give a proof of Theorem 1.1.

Proof of Theorem 1.1. Though the equivalence between (i) and (iv) has been par-
tially proved as Theorem 1.2 in [21], we will give a whole proof of Theorem 1.1 for
completeness. We show it following the diagram below:

(i)

��

(iii)
�%

DDDDDD

(iv)

]eDDD
DDD 8@yyy yyy

(v)
y� zzzzzz

(ii)

9Azzzzzz
(vi)

^f EEE
EEE

(i)⇒ (ii). This is clear.

(ii)⇒ (iv). Assume that the strongly periodic θn-curve θKn is hyperbolic for some
n ≥ 3. Then there is no essential torus in E(θKn ) by Thurston’s study of geo-
metric structure on three-dimensional manifolds. So any embedded equivariant
torus in E(θKn ) which is disjoint from αn is compressible in E(θKn ) as well. Then
there is a compression disc in E(θKn ) which has no intersection with αn by
Lemma 1.6. This means that any embedded equivariant torus in E(θKn ∪ αn) is
compressible in E(θKn ∪αn). So we can apply Lemma 1.5 for n = 2 and we thus
have (iv) since E(θK2 ∪ α2) = E(K ∪ α).

(iv)⇒ (i). Since θK1 is an arc whose terminal vertices lie on α1, the manifold E(θK1 ) is
topologically the three-dimensional ball, and α1 turns out to be two arcs in the
ball, which we will denote by α1 again. Thus (E(θK1 ), α1) can be regarded as a
two-string tangle. This realization is the so-called Montesinos trick. See [1,11].

Since K is a non-trivial knot in S3, the exterior of K in S3 is irreducible and
boundary-irreducible. The two-string tangle (E(θK1 ), α1) is thus prime by [9,
Theorem 3.5.17].

Moreover Lemma 1.5 can be applied by the assumption so that any embedded
equivariant torus in E(θK1 ∪ α1) is compressible in E(θK1 ∪ α1). Since the finite
group acting on E(θK1 ∪α1) is the trivial group, the result above actually means
that any embedded torus in E(θK1 ∪ α1) is compressible in E(θK1 ∪ α1). This
implies that the tangle (E(θK1 ), α1) atoroidal, or it is the so-called hyperbolic
tangle in the sense of [9].
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Let (DE(θK
1 ),Dα1) be the double of (E(θK1 ), α1) along the sphere ∂E(θK1 ). Then

Dα1 gives a hyperbolic link in S3 by Exercise 3.6.4 together with Theorem 3.6.6
both in [9]. Now, as we saw in [21, Theorem 2.1], the n-fold cyclic branched
covering of (DE(θK

1 ),Dα1) along Dα1 is a closed hyperbolic manifold for any
n ≥ 3.

Each manifold obtained by the covering admits an involution along the surface in
the manifold induced from ∂E(θK1 ). The action can be regarded as an isometry
by Mostow-Prasad’s rigidity theorem (see [4] for example). Thus the quotient
by this action is a hyperbolic manifold with totally geodesic boundary. As a
result, the n-fold cyclic branched covering of (E(θK1 ), α1) along α1 is a hyperbolic
manifold with totally geodesic boundary for any n ≥ 3. This conclusion means
that (i) holds by the definition of n/2-fold cyclic branched covering.

(iii)⇒ (v). This is trivial since E(K ∪ α) is a submanifold in E(K).

(v)⇒ (vi). This is trivial.

(vi)⇒ (iv). This is an immediate consequence of Lemma 1.6.

(iv)⇒ (iii). Proposition 1.2 guarantees the contraposition of this statement as follows:
suppose that there is an incompressible torus in E(K ∪ α). Since the genus
of ∂E(K ∪ α) is three, it is not boundary-parallel, i.e., it is actually essential.
Then we can find an embedded equivariant incompressible torus in E(K ∪α) by
Proposition 1.2.

We have thus completed the proof of Theorem 1.1.

Let Gn be a hyperbolic strongly periodic θn-curve in S3. Then, as in the previous
theorem, a knot can be obtained from Gn by the 2/n-fold cyclic branched covering;
namely first take the quotient by the periodic diffeomorphism of order n, and then
take the double branched covering along the axis of the periodic diffeomorphism. The
knot obtained by this procedure must be a non-trivial strongly invertible knot, and
the spatial graph obtained from this knot by l/2-fold cyclic branched covering is a
hyperbolic strongly periodic θl-curve, which can be called the spatial periodic θl-curve
obtained from Gn by the l/n-fold cyclic branched covering. We have thus obtained
the following corollary as an immediate consequence of Theorem 1.1:

Corollary 1.7. Let Gn be a hyperbolic strongly periodic θn-curve in S3. Then, for
any integer l ≥ 3, Gl is a hyperbolic strongly periodic θl-curve in S3 as well, where
Gl is constructed from Gn by the l/n-fold cyclic branched covering.

Now, once we have obtained Theorem 1.1, the following question naturally arises:

Question. Which strongly invertible knot satisfies the conditions of Theorem 1.1?

We will give several partial answers to this question in the next section.
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2. Which strongly invertible knot can be a source of strongly
periodic hyperbolic θn-curves?

We start this section with proving the following lemma.

Lemma 2.1. Let G be a strongly periodic spatial graph in S3 admitting a periodic
action with axis α. Suppose that there is an embedded equivariant torus in E(G) which
is disjoint from α and boundary-parallel. Then G must be a knot, and the torus has
a compression disc in E(G); this implies that G is the trivial knot.

Proof. The assumption of this lemma says that there is an embedded torus, say T ,
in E(G ∪ α) that is parallel to a boundary component ∂0E(G) of ∂E(G) in E(G).
This means that G has at least one connected component which is homeomorphic
to a circle. Thus, by the definition of strongly periodic spatial graph, the strongly
periodic action must be a strong inversion, which we denote by ι. We now start this
proof with showing that G is actually a knot.

By taking regular neighborhoods of G and α suitably, we can assume that both
E(G) and E(G ∪ α) admit an action induced by the periodic diffeomorphism. Since
T is parallel to ∂0E(G), there is a compact submanifold V in E(G) such that ∂V
consists of T and ∂0E(G) and that V is homeomorphic to the product manifold
T 2 × [0, 1] constructed by the two-dimensional torus T 2. Since T can be regarded
as in S3, it separates S3 into two compact submanifolds. We denote one of them
containing V by MV . Then, since ∂0E(G) ∩ α 6= ∅ and T ∩ α = ∅ whereas G ∪ α is
connected, MV entirely contains G∪α. Thus all boundary components of E(G) must
be contained in MV . However, since MV consist of the union of a solid torus and V ,
MV can contain at most one component of G. This implies that G must be a knot,
and thus ∂0E(G) = ∂E(G).

We next show that the torus T has a compression disc in E(G). Since T is
equivariant under ι, possible arrangements between T and ι(T ) are either ι(T ) = T
or ι(T ) ∩ T = ∅. So one of the following two cases can happen for ι(T ):

• ι(T ) ⊂ V , or

• ι(T ) ⊂ E(G)− V .

We first consider the latter case. Then, since ι is a homeomorphism which
preserves ∂E(G), the submanifold ι(V ) is again homeomorphic to T 2 × [0, 1] with
∂ι(V ) = ι(T ) ∪ ∂E(G). Thus ι(T ) is again parallel to ∂E(G). Furthermore, since
ι = ι−1 and ι(T ) ∩ T = ∅ in this case, the embedded torus T must be contained in
ι(V ). So we can regard ι(V ) and ι(T ) as V and T , and the situation turns out to be
the former case.

We then consider the former case. Recall that what we want to prove is the
existence of a compression disc for T in E(G), and we will do it by contradiction. So
we assume that T is incompressible in E(G). Then, since ι is a homeomorphism, ι(T )
is also incompressible in E(G), and thus especially incompressible in V . Since V has a
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homeomorphism ψ to T 2× [0, 1], the embedded torus ψ◦ι(T ) is also incompressible in
T 2× [0, 1]. Then, by [6, Lemma (1)], any incompressible surface in T 2× [0, 1] must be
parallel to both T 2×{0} and T 2×{1}, and thus so is ψ◦ι(T ). Since ∂E(G) is preserved
by ι, we have ψ◦ι(V ) ⊆ T 2×[0, 1], which is equivalent to ι(V ) ⊆ ψ−1(T 2×[0, 1]) = V .
Thus we have the following relation:

V = ι2(V ) ⊆ ι(V ) ⊆ V,

where we used the fact that ι2 is trivial.
So we have ι(V ) = V , which means that ι|V is an order two periodic action on V

with ι(∂E(G)) = ∂E(G) and ι(T ) = T . Thus we have ∂(T 2×[0, 1]) = ψ(∂E(G))∪ψ(T )
and ψ ◦ ι ◦ ψ−1 is an order two periodic action on T 2 × [0, 1] which preserves both
ψ(∂E(G)) and ψ(T ). Then it is shown as Theorem 2.1 in [13] that any finite group
action on a three-dimensional manifold with product structure preserves the structure.
So ψ(T ) must intersect with the axis ψ(V ∩α) of the order two periodic action. This
is equivalent to T ∩ α 6= ∅, which contradicts the assumption that T ⊂ E(G ∪ α).
Thus T is compressible in E(G).

We have thus proved Lemma 2.1

2.1. Simple knots and tunnel number one knots

A three-dimensional manifold is said to be simple when it contains no essential torus.
A link is said to be simple when it is non-trivial and its exterior is a simple manifold.
By Thurston’s study of geometric structures on knot exterior in S3, any non-trivial
knot in S3 is known to be one of a torus knot, a hyperbolic knot or a satellite knot.
See [19]; see also [8, 18] for a detailed proof. Thus any simple knot in S3 is either a
torus knot or a hyperbolic knot. For such a knot, we have the following proposition:

Proposition 2.2. For any strongly invertible non-trivial simple link L in S3 and the
axis α of any strong inversion of the pair (S3, L), any embedded equivariant torus
in E(L) which is disjoint from α is compressible in E(L).

Proof. The definition of simpleness for a link L implies that there is no essential
torus in E(L). So any embedded equivariant torus in E(L) is either compressible or
boundary-parallel. However, since L is non-trivial, the latter case cannot happen by
Lemma 2.1.

A knot K in S3 is said to be tunnel number one if there exists an arc τ properly
embedded in S3 −K such that E(K ∪ τ) becomes a handlebody of genus two. Such
a knot is isotopic onto the genus two surface appearing as the boundary ∂E(K ∪ τ),
which gives a standard genus two Heegaard surface in S3. So the knot admits a strong
inversion induced from that of the surface. Thus every tunnel number one knot is
known to be strongly invertible. See also [12, Lemma 5].
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Proposition 2.3. For any non-trivial tunnel number one knot K in S3 and the
axis α of any strong inversion of the pair (S3,K), any embedded equivariant torus
in E(K) which is disjoint from α is compressible in E(K).

Proof. Because of Proposition 2.2, we only consider the case where the tunnel number
one knot is satellite. For such a knot K, it has been proved as Theorem 2.1 in [14]
that it is made of a non-trivial torus knot K0 and a two-bridge link K1 ∪K2 which
is neither a trivial link nor a Hopf link by gluing ∂E(K2) to ∂E(K0). Since K2 itself
is a trivial knot in S3, E(K2) is a solid torus containing K1. Thus the image of K1

under this gluing can be regarded as a knot in S3. From now on, we will denote the
images of E(K1∪K2) and E(K2) under this gluing by the same symbols. Then we say
that E(K) is decomposed into two parts; one is the torus knot exterior part E(K0),
which is a Seifert fibered space, and the other is the two-bridge link exterior part
E(K1 ∪K2), which admits hyperbolic structure. Thus the characteristic submanifold
of E(K) coincides with E(K0) up to ambient isotopy in E(K). See [7]. Then, by
[13, Theorem 8.6], E(K0) can be taken to be preserved by the strong inversion ι of
the pair (S3,K) with axis α. This implies that the action of ι gives a periodic action
of order two on E(K0), and it then equals to the restriction to E(K0) of the strong
inversion of the torus knot. See 10.6 of [9] for example.

Let T be an embedded equivariant torus in E(K) which is disjoint from α. If T is
not compressible in E(K), then one of the following two cases can happen:

• The torus T is essential in E(K), or

• The torus T is boundary-parallel in E(K).

If the latter case happens, then we can apply Lemma 2.1 so that K must be a
trivial knot. This contradicts the assumption of K. So we study the former case from
now on. Then this assumption implies that T is essential in E(K∪α) as well. Since the
satellite torus Ts is incompressible in E(K), the punctured surface T ′s := Ts∩E(K∪α)
is also incompressible in E(K ∪ α). Thus, in the former case, T can be isotoped
in E(K ∪ α) so that one of the following two subcases occurs:

– The torus can be isotoped to T ′ so that the two tori T ′ and Ts intersect each
other, and the intersection consists of circles essential in both T ′ and T ′s.

– The torus can be isotoped to T ′ so that the two tori T ′ and Ts do not intersect
each other.

We start with considering the former subcase. Then we can also assume that
the intersection is minimal up to isotopy in E(K ∪ α). Then T ′ ∩ E(K0) consists of
essential annuli in E(K0) − (E(K0) ∩ α). By taking the projection of (E(K0), α) by
the quotient map induced from ι, we have a two-string tangle (B3, t).

Claim. This tangle (B3, t) is prime and atoroidal.
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Proof. Since E(K0) is irreducible and boundary-irreducible, (B3, t) is prime. See [9,
Theorem 3.5.15] for example. Since torus knots are simple knots, E(K0) is atoroidal.
Thus any embedded equivariant tours in E(K0) which is disjoint from α is either
boundary-parallel or compressible in E(K0). If the former case happens, then K0

must be the trivial knot by Lemma 2.1. So such a torus is always compressible
in E(K0). Furthermore, we can always find such a compression disc in E(K0) with
no intersection with α by Lemma 1.6. This means that the exterior of E(K0) ∩ α
in E(K0) is also atoroidal. Then Lemma 1.5 can be applied so that any embedded
torus in (B3, t) is compressible in (B3, t), which means that (B3, t) is atoroidal.

On the other hand, each essential annulus appearing as a component of T ′∩E(K0)
descends into B3−t as an immersed essential, i.e., π1-injective, annulus. Then we can
find an embedded essential annulus in B3 − t by the Annulus Theorem (see VIII.13
of [7] for example). However this contradicts the following fact: if (B3, t) is prime
and atoroidal, then B3− t contains no essential annulus. See 3.6.4 of [9] for example.

Thus the former subcase cannot occur and now we assume the latter subcase,
or equivalently, T is isotoped into E(K0 ∪ α) or E(K1 ∪ K2 ∪ α). Recall that the
restriction of the strong inversion ι into E(K0) (resp. E(K1 ∪ K2)) gives its strong
inversions with axis α∩E(K0) (resp. α∩E(K1∪K2)). Then, since T is essential, we can
apply Proposition 1.2 so that there is an equivariant essential torus. This contradicts
Proposition 2.2 since non-trivial torus knots are known to be simple; actually they
are small (see subsection 2.2), and non-trivial two-bridge links except Hopf link are
also known to be simple (see [17, Corollary 5] for example).

We have thus proved Proposition 2.3.

These two propositions together with Theorem 1.1 (vi) immediately implies the
following result:

Theorem 2.4. Let K be a non-trivial and strongly invertible knot in S3. If K is
simple or tunnel number one, then, for any n ≥ 3, the strongly periodic θn-curve con-
structed by the n/2-fold cyclic branched covering along any axis of a strong inversion
of the pair (S3,K) is hyperbolic.

As a corollary to Propositions 2.2 and 2.3, we have the following result, which
gives a necessary condition for a non-trivial strongly invertible knot to be simple or
tunnel number one.

Corollary 2.5. Let K be a non-trivial strongly invertible knot in S3 admitting a
strong inversion ι with axis α. Let G be the spatial θ3-curve appearing as the quotient
of K ∪ α under ι. Then, if K is simple or tunnel number one, any embedded torus
in E(G) is compressible.

Proof. Take an embedded torus T in E(G), and let ÜT be a torus in E(K∪α) appearing
as a component of the pre-image of T by ι. The torus ÜT is equivariant under the
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Figure 3 – Connected sum of two trefoil knots with two distinct axes α and β of
distinct strong inversions

action of the involution ι, and disjoint from α in E(K) by construction. Since K is
assumed to be simple or tunnel number one, we can find a compression disc for ÜT
which is disjoint from α by Propositions 2.2 and 2.3 and Theorem 1.1. Then ÜT has
a compression disc which is disjoint from α and equivariant under the action of ι by
Lemma 1.4, which descends to a compression disc for T .

2.2. How about other knots?

Since we have Theorem 2.4, remaining strongly invertible knots are those which are
satellite with tunnel number greater than one. In this case the property of hyperbol-
icity of the spatial graphs generally depends on the choice of the strong inversion.

One of its typical examples is the so-called Granny knot. This knot is made from
a trefoil knot and its copy by their connected sum; see figure 3. A knot in S3 is said
to be small if its exterior contains no closed essential surface. Since non-trivial torus
knots are shown to be small by Theorem in [20], so is the trefoil knot. Furthermore,
since it is tunnel number one, we can apply [15, Theorem 4] so that the Granny knot
is not tunnel number one.

The Granny knot K has two distinct strong inversion; one is with axis α, and the
other is with axis β in figure 3. If we choose the strong inversion with axis α, then
we can see that the spatial graphs obtained by n/2-fold cyclic branched covering are
hyperbolic, by checking that the link Dα1 , which appeared in the proof of Theorem 1.1,
is hyperbolic.

On the other hand, for E(K ∪ β), one can easily see that there is an essential
torus, which is obtained from the decomposing sphere by tubing along one of the
trefoil knot. This torus is the so-called swallow-follow torus. Thus we cannot obtain
hyperbolic spatial graphs from this strong inversion by Theorem 1.1.

Thus we can say that the hyperbolicity depends on the choice of the strong inver-
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sion in general.
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